MATH 304-502/503 Fall 2014

Sample problems for Test 2: Solutions
Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Let Mj2(R) denote the vector space of 2 x 2 matrices with real
entries. Consider a linear operator L : Mso(R) — Moo (R) given by

L(20)= (206

Find the matrix of the operator L with respect to the basis

10 0 1 00 00
me(on) me(00) mo(o) m-()

Let M denote the desired matrix. By definition, My is a 4 x 4 matrix whose columns are
coordinates of the matrices L(E1), L(E>), L(E3), L(E4) with respect to the basis Fy, Es, F3, E4. We

have that
10 1 2 1 2
L(Ey) = < ) < 1) = <0 0> =1F1 +2F5 4+ 0F3 + 0Fy,

0 1\ /1 2 3 4
wen= (3 ) (3 2) = (3 4) =aur st oms v,
0 0\ /1 2 0 0
L(Es)—<1 0) <3 4>—<1 2>—OE1+0E2+1E3+2E4,
0 0\ /1 2 0 0
L(E4)—<O 1) <3 4>_<3 4>—OE1+0E2+3E3+4E4.
It follows that
1300
2 4 0 0
Mi=149 01 3
00 2 4

Problem 2 (20 pts.) Find a linear polynomial which is the best least squares fit to the
following data:
v || =2 -1]0]1]2
fl@)|-3]-2|1]2]5

We are looking for a function f(x) = ¢1 + cox, where ¢1, c2 are unknown coefficients. The data of
the problem give rise to an overdetermined system of linear equations in variables ¢; and cs:

Cc1 — 262 = —3,
Cl — Cy = —2,
61:1,

c1 4 co =2,

c1 + 2¢c9 = 5.
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This system is inconsistent. We can represent it as a matrix equation Ac =y, where

1 -2 -3
1 -1 —9
A=11 o, c:<cl>, y=| 1
11 ©2 P
1 2 5

1 -2 -3
(1 1111)1_(1)((;1)_(1 1111)‘%
2 =101 2); |\e -2 -1 0 1 2 5
1 2 5

5 0 C1 o 3 — Ccl = 3 / 5
0 10 C9 a 20 Cy = 2
Thus the function f(x) = %—i—Za: is the best least squares fit to the above data among linear polynomials.

A

Problem 3 (25 pts.) Let V be a subspace of R* spanned by the vectors x; = (1,1,1,1)
and x, = (1,0,3,0).
(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to vectors xi,xs and obtain an or-
thogonal basis v, vy for the subspace V:

X2 V1

4
V] =X1 = (1717 171)7 Vo) =X — Vi1 = (1707370) - 1(1717 171) = (07 _1727_1)

Vi V]
Then we normalize vectors vy, vy to obtain an orthonormal basis wi, wy for V:

Vi1 1 1 V9 1 1
Wi = — = —V1 = — 1717 171 s W9y = —— = ——V9 = —— 07—172,_1 .
1= g T2 T b b W= o= v = R )



(ii) Find an orthonormal basis for the orthogonal complement V.

Since the subspace V is spanned by vectors (1,1,1,1) and (1,0,3,0), it is the row space of the

matrix
11 11
A= <1 0 3 0) '
Then the orthogonal complement V' is the nullspace of A. To find the nullspace, we convert the
matrix A to reduced row echelon form:

1111 R 10 30 R 10 30
1 0 3 0 1 1 1 1 01 -2 1)/°
Hence a vector (z1,2,x3,24) € R* belongs to V* if and only if

1+ 3x3 =0 1 = —313
To—2x3+ x4 =0 To = 2T3 — X4

The general solution of the system is (z1,x2,z3,x4) = (—3t,2t — s,t,s) = t(—3,2,1,0) + s(0,—1,0, 1),
where ¢, s € R. It follows that V' is spanned by vectors x3 = (0,—1,0,1) and x4 = (—3,2,1,0). Tt
remains to orthogonalize and normalize this basis for V1:

: )
vi=x3=(0,-1,0,1),  vi=3x1— vy =(-3,2,1,0)— —(0,-1,0,1) = (-3,1,1,1),
V3 -V3 2
V3 1 V4 1 1
W3 = = _(07_1707 1)7 W4 = = Vg = (_3717171)
Ivsl V2 [vall 23 2v/3
Thus the vectors w3 = %(0, —1,0,1) and wy = ﬁ(—?), 1,1,1) form an orthonormal basis for V.

Alternative solution: Suppose that an orthonormal basis wy, ws for the subspace V' has been
extended to an orthonormal basis w1, wa, w3, wy for R%. Then the vectors wg, w4 form an orthonormal
basis for the orthogonal complement V.

We know that vectors vi = (1,1,1,1) and vy = (0, —1,2,—1) form an orthogonal basis for V. This
basis can be extended to a basis for R* by adding two vectors from the standard basis. For example,
we can add vectors e3 = (0,0, 1,0) and e4 = (0,0,0,1). The vectors vi, vy, es,e4 do form a basis for
R* since the matrix whose rows are these vectors is nonsingular:

1 11 1
0 -1 2 -1
0 01 0“17&0'
0 00 1

To orthogonalize the basis vi,vs,es, es, we apply the Gram-Schmidt process (note that the vectors
vy and vy are already orthogonal):

€3 Vi €3 - Vo 1 2 1
—e3 — — = 1,0) — =(1,1,1,1) — =(0,-1,2, 1) = —(-3,1,1,1
V3 €3 V1'V1V1 V2'V2V2 (0707 70) 4(7 ) ) 6(07 P ) 12( 37 ) )7
€4-V1 €4V €4-V3
V4 = €4 — Vi — Vo — V3 =
Vi-Vi V2 V2 V3 -V3
1 -1 1/12 1 1
= 1) —=(1,1,1,1) — —(0,-1,2,-1) = L= . —(=3,1,1,1) = =(0, 1,0, 1).
(070707 ) 4( y oy Ly ) 6 (07 P ) 1/12 12( 37 y ) 2(07 707 )



It remains to normalize vectors vy, ve, V3, vy:

Vi 1 Vo 1

wp = —— ==(1,1,1,1), wy = —— = —(0,—1,2,—1),
[vall 2 [vall V6
V3 1 Va 1
wy = —— =+12vy = —(—3,1,1,1), wi=—— =+2vy=—(0,-1,0,1).
P Tl N b wa= o= V2= o )

We have obtained an orthonormal basis wi, wg, ws, ws for R? that extends an orthonormal basis
w1, wo for the subspace V. Tt follows that wg = ﬁ(—?), 1,1,1), wy = %(0, —1,0,1) is an orthonormal

basis for V+.

DN = DN
— = O

1
Problem 4 (30 pts.) Let A= |1
0

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation det(A — AI) = 0. We obtain that

1—-x 2 0
det(A—X)=] 1 1-X 1 |[=@1-=XN3=21-X)—-2(1-2))
0 21—
=(1=XN(1=2)=49)=1-0)(1-X)=-2)(1=-N)+2) =—A=1A+1)(XA-3).

Hence the matrix A has three eigenvalues: —1, 1, and 3.

(i) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x,y, z) of A associated with an eigenvalue ) is a nonzero solution of the vector
equation (A — AI)v = 0. To solve the equation, we apply row reduction to the matrix A — AI.

First consider the case A = —1. The row reduction yields
2 20 110 110 1 10 1 0 -1
A+I=(1 2 1|—->[1 2 1|—=0 1 1]—=10 1 1|—=1]01 1
0 2 2 0 2 2 0 2 2 0 00 0 0
Hence
1 0 -1 x 0 2= 0
(A+I)iv=0 < 01 1])f{y|l=1]0 = { +Z:0’
00 0/\z 0 yre=
The general solution is = t, y = —t, z = t, where t € R. In particular, v; = (1,—1,1) is an

eigenvector of A associated with the eigenvalue —1.
Secondly, consider the case A = 1. The row reduction yields

02 0 10 1 10 1 10 1
A-T=(101)l=(o20]l=l010]=]010
02 0 02 0 02 0 00 0
Hence
1 0 1\ /=z 0 o
A-Iv=0 <« [0 10][y]|=(0] <= {:”J_rg_o’
00 0/\z 0 y=u



The general solution is © = —t, y = 0, z = ¢, where t € R. In particular, vo = (—1,0,1) is an
eigenvector of A associated with the eigenvalue 1.
Finally, consider the case A = 3. The row reduction yields

2 2 0 1 -1 0 1 -1 0
A-3r= 1 2 1|=(1 2 1]=]0 -1 1
0 2 -2 0 2 -2 0 2 -2
1 -1 0 1 -1 0 10 —1
— 10 1 -1} —160 1 -1 —=10 1 -1
0 2 -2 0 0 0 00 0
Hence
1 0 -1 x 0
(A-3)v=0 < [0 1 -1]|[y]=(0] <= {a:—z:O,
00 0/)\z 0 y—==0

The general solution is x = t, y =t, z = t, where ¢ € R. In particular, v3 = (1,1,1) is an eigenvector
of A associated with the eigenvalue 3.

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for R? formed by its eigenvectors. Namely,
the vectors vi = (1,—1,1), vo = (—1,0,1), and v3 = (1,1,1) are eigenvectors of the matrix A
belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that
V1, Vs, V3 is a basis for R3.

Alternatively, the existence of a basis for R? consisting of eigenvectors of A already follows from
the fact that the matrix A has three distinct eigenvalues.

(iv) Find all eigenvalues of the matrix A2

Suppose that v is an eigenvector of the matrix A associated with an eigenvalue A, that is, v # 0
and Av = Av. Then
A%v = A(Av) = A(AV) = A(Av) = A(\v) = A?v.
Therefore v is also an eigenvector of the matrix A? and the associated eigenvalue is A2. We already
know that the matrix A has eigenvalues —1, 1, and 3. It follows that A2 has eigenvalues 1 and 9.

Since a 3 x 3 matrix can have up to 3 eigenvalues, we need an additional argument to show that
1 and 9 are the only eigenvalues of A%2. The matrix A is diagonalizable. Namely, A = UBU ™!, where

-1 0 0
B = 010
00 3
and U is the matrix whose columns are eigenvectors vi, va, v3:

U= |-

—_ =
_ O =
—_ =

Then A2 = UBUUBU~! = UB2U L. 1t follows that

det(A% — ) = det(UB*U ™" — XI) = det(UB*U ™' = U(M)U ™)
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= det(U(B? = A)U ') = det(U) det(B* — M) det(U™") = det(B* — AI).

Thus the matrix A2 has the same characteristic polynomial as the diagonal matrix
1 00
B*’=(0 10
0 09
Consequently, the matrices A? and B? have the same eigenvalues. The latter has eigenvalues 1 and 9.

Bonus Problem 5 (15 pts.) Let L:V — W be a linear mapping of a finite-dimensional
vector space V' to a vector space W. Show that

dim Range(L) + dim ker(L) = dim V.

The kernel ker(L) is a subspace of V. Since the vector space V is finite-dimensional, so is ker(L).
Take a basis vi,va, ..., v for the subspace ker(L), then extend it to a basis vi,..., v, up,ug, ..., Uy,
for the entire space V. We are going to prove that vectors L(u;), L(uz),..., L(u,,) form a basis for
the range L(V'). Then dim Range(L) = m, dimker(L) = k, and dimV = k + m.

Spanning: Any vector w € Range(L) is represented as w = L(v), where v € V. We have

V=o1V] +aovy + -+ apvi + frug + fBoug + - - - + By,
for some «;, f; € R. It follows that
w=L(v)=a1L(vy)+ - +arL(vg) + S1L(uy) + - - - + B L(uy,) = B1L(uy) + - - - + B L(uy,)

(L(v;) = 0 since v; € ker(L)). Thus Range(L) is spanned by the vectors L(uy), L(ug),. .., L(uy,).
Linear independence: Suppose that t1L(uy) + toL(ug) + - - + ¢, L(u,,) = 0 for some t; € R. Let
u=tiuy + toug + - - - + tyyuyy,. Since

L(u) = tlL(ul) + t2L(u2) + -+ tmL(um) =0,

the vector u belongs to the kernel of L. Therefore u = s1vy + sava + - - + s, vy, for some s; € R. It
follows that

tiug +tous + - - -+t — S1VE — S9ve — - - — SV =u —u = 0.
Linear independence of vectors vi,..., Vg, uy,...,u, implies that t; =ty =--- =t,, = 0 (as well as
s1 =83 =--- = s =0). Thus the vectors L(u;), L(uz),..., L(u,,) are linearly independent.



