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Topics in Applied Mathematics

Lecture 2-13:
Review for Test 2.



Topics for Test 2

Vector spaces and linear transformations (Williamson/Trotter
3.1–3.4)

• Vector spaces. Subspaces.
• Linear mappings. Matrix transformations.
• Span. Image and null-space.
• Linear independence (especially in functional spaces).

Basis, dimension, coordinates (Williamson/Trotter 3.5, 3.6C)

• Basis of a vector space. Dimension.
• Matrix of a linear transformation.
• Change of coordinates.

Eigenvalues and eigenvectors (Williamson/Trotter 3.6)

• Eigenvalues, eigenvectors, eigenspaces.
• Characteristic equation of a matrix.
• Bases of eigenvectors, diagonalization.



Sample problems for Test 2

Problem 1 (20 pts.) Determine which of the
following subsets of R

3 are subspaces. Briefly
explain.

(i) The set S1 of vectors (x , y , z) ∈ R
3 such that

xyz = 0.
(ii) The set S2 of vectors (x , y , z) ∈ R

3 such that
x + y + z = 0.
(iii) The set S3 of vectors (x , y , z) ∈ R

3 such that
y 2 + z2 = 0.
(iv) The set S4 of vectors (x , y , z) ∈ R

3 such that
y 2 − z2 = 0.



Sample problems for Test 2

Problem 2 (20 pts.) Let M2,2(R) denote the
space of 2-by-2 matrices with real entries. Consider
a linear operator L : M2,2(R) → M2,2(R) given by

L

(

x y
z w

)

=

(

1 2
3 4

) (

x y
z w

)

.

Find the matrix of the operator L with respect to
the basis

E1 =

(

1 0
0 0

)

, E2 =

(

0 1
0 0

)

, E3 =

(

0 0
1 0

)

, E4 =

(

0 0
0 1

)

.



Sample problems for Test 2

Problem 3 (30 pts.) Consider a linear operator
f : R

3 → R
3, f (x) = Ax, where

A =





1 −1 −2
−2 1 3
−1 0 1



 .

(i) Find a basis for the image of f .
(ii) Find a basis for the null-space of f .



Sample problems for Test 2

Problem 4 (30 pts.) Let B =





1 2 0
1 1 1
0 2 1



.

(i) Find all eigenvalues of the matrix B .
(ii) For each eigenvalue of B , find an associated
eigenvector.
(iii) Is there a basis for R

3 consisting of
eigenvectors of B? Explain.
(iv) Find a diagonal matrix D and an invertible
matrix U such that B = UDU−1.
(v) Find all eigenvalues of the matrix B2.



Sample problems for Test 2

Bonus Problem 5 (20 pts.) Solve the following
system of differential equations (find all solutions):































dx

dt
= x + 2y ,

dy

dt
= x + y + z ,

dz

dt
= 2y + z .



Problem 1. Determine which of the following
subsets of R

3 are subspaces. Briefly explain.

A subset of R
3 is a subspace if it is closed under addition and

scalar multiplication. Besides, the subset must not be empty.

(i) The set S1 of vectors (x , y , z) ∈ R
3 such that

xyz = 0.

(0, 0, 0) ∈ S1 =⇒ S1 is not empty.

xyz = 0 =⇒ (rx)(ry)(rz) = r 3xyz = 0.
That is, v = (x , y , z) ∈ S1 =⇒ rv = (rx , ry , rz) ∈ S1.
Hence S1 is closed under scalar multiplication.

However S1 is not closed under addition.
Counterexample: (1, 1, 0) + (0, 0, 1) = (1, 1, 1).



Problem 1. Determine which of the following
subsets of R

3 are subspaces. Briefly explain.

A subset of R
3 is a subspace if it is closed under addition and

scalar multiplication. Besides, the subset must not be empty.

(ii) The set S2 of vectors (x , y , z) ∈ R
3 such that

x + y + z = 0.

(0, 0, 0) ∈ S2 =⇒ S2 is not empty.

x + y + z = 0 =⇒ rx + ry + rz = r(x + y + z) = 0.
Hence S2 is closed under scalar multiplication.

x + y + z = x ′ + y ′ + z ′ = 0 =⇒
(x + x ′)+ (y + y ′)+ (z + z ′) = (x + y + z)+ (x ′ + y ′ + z ′) = 0.
That is, v = (x , y , z), v′ = (x , y , z) ∈ S2

=⇒ v + v′ = (x + x ′, y + y ′, z + z ′) ∈ S2.
Hence S2 is closed under addition.



(iii) The set S3 of vectors (x , y , z) ∈ R
3 such that

y 2 + z2 = 0.

y 2 + z2 = 0 ⇐⇒ y = z = 0.

S3 is a nonempty set closed under addition and scalar
multiplication.

(iv) The set S4 of vectors (x , y , z) ∈ R
3 such that

y 2 − z2 = 0.

S4 is a nonempty set closed under scalar multiplication.
However S4 is not closed under addition.
Counterexample: (0, 1, 1) + (0, 1,−1) = (0, 2, 0).



Problem 2. Let M2,2(R) denote the vector space of 2×2
matrices with real entries. Consider a linear operator
L : M2,2(R) → M2,2(R) given by

L

(

x y
z w

)

=

(

1 2
3 4

) (

x y
z w

)

.

Find the matrix of the operator L with respect to the basis

E1 =

(

1 0
0 0

)

, E2 =

(

0 1
0 0

)

, E3 =

(

0 0
1 0

)

, E4 =

(

0 0
0 1

)

.

Let ML denote the desired matrix.

By definition, ML is a 4×4 matrix whose columns are
coordinates of the matrices L(E1), L(E2), L(E3), L(E4)
with respect to the basis E1, E2, E3, E4.



L(E1) =

(

1 2
3 4

) (

1 0
0 0

)

=

(

1 0
3 0

)

= 1E1+0E2+3E3+0E4,

L(E2) =

(

1 2
3 4

) (

0 1
0 0

)

=

(

0 1
0 3

)

= 0E1+1E2+0E3+3E4,

L(E3) =

(

1 2
3 4

) (

0 0
1 0

)

=

(

2 0
4 0

)

= 2E1+0E2+4E3+0E4,

L(E4) =

(

1 2
3 4

) (

0 0
0 1

)

=

(

0 2
0 4

)

= 0E1+2E2+0E3+4E4.

It follows that

ML =









1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4









.



Thus the relation
(

x1 y1

z1 w1

)

=

(

1 2
3 4

) (

x y
z w

)

is equivalent to the relation








x1

y1

z1

w1









=









1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4

















x
y
z
w









.



Problem 3. Consider a linear operator f : R
3 → R

3,

f (x) = Ax, where A =





1 −1 −2
−2 1 3
−1 0 1



.

(i) Find a basis for the image of f .

The image of f is spanned by columns of the matrix A:
v1 = (1,−2,−1), v2 = (−1, 1, 0), v3 = (−2, 3, 1).

det A =

∣

∣

∣

∣

∣

∣

1 −1 −2
−2 1 3
−1 0 1

∣

∣

∣

∣

∣

∣

= −1

∣

∣

∣

∣

−1 −2
1 3

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

1 −1
−2 1

∣

∣

∣

∣

= 0.

Hence v1, v2, v3 are linearly dependent.
It is easy to observe that v2 = v1 + v3.
It follows that Span(v1, v2, v3) = Span(v1, v3).

Since the vectors v1 and v3 are linearly independent, they form
a basis for the image of f .



Problem 3. Consider a linear operator f : R
3 → R

3,

f (x) = Ax, where A =





1 −1 −2
−2 1 3
−1 0 1



.

(ii) Find a basis for the null-space of f .

The null-space of f is the set of solutions of the vector
equation Ax = 0. To solve the equation, we convert the
matrix A to reduced row echelon form:




1 −1 −2
−2 1 3
−1 0 1



 →





1 −1 −2
0 −1 −1
0 −1 −1



 →





1 −1 −2
0 −1 −1
0 0 0





→





1 −1 −2
0 1 1
0 0 0



 →





1 0 −1
0 1 1
0 0 0



 →

{

x − z = 0,
y + z = 0.

General solution: (x , y , z) = (t,−t, t) = t(1,−1, 1), t ∈ R.
Hence the null-space is a line and (1,−1, 1) is its basis.



Problem 4. Let B =





1 2 0
1 1 1
0 2 1



.

(i) Find all eigenvalues of the matrix B .

The eigenvalues of B are roots of the characteristic equation
det(B − λI ) = 0. We obtain that

det(B − λI ) =

∣

∣

∣

∣

∣

∣

1 − λ 2 0
1 1 − λ 1
0 2 1 − λ

∣

∣

∣

∣

∣

∣

= (1 − λ)3 − 2(1 − λ) − 2(1 − λ) = (1 − λ)
(

(1 − λ)2 − 4
)

= (1 − λ)
(

(1 − λ) − 2
)(

(1 − λ) + 2
)

= −(λ − 1)(λ + 1)(λ − 3).

Hence the matrix B has three eigenvalues: −1, 1, and 3.



Problem 4. Let B =





1 2 0
1 1 1
0 2 1



.

(ii) For each eigenvalue of B , find an associated eigenvector.

An eigenvector v = (x , y , z) of the matrix B associated with
an eigenvalue λ is a nonzero solution of the vector equation

(B−λI )v = 0 ⇐⇒





1 − λ 2 0
1 1 − λ 1
0 2 1 − λ









x
y
z



 =





0
0
0



 .

To solve the equation, we convert the matrix B − λI to
reduced row echelon form.



First consider the case λ = −1. The row reduction yields

B + I =





2 2 0
1 2 1
0 2 2



 →





1 1 0
1 2 1
0 2 2





→





1 1 0
0 1 1
0 2 2



 →





1 1 0
0 1 1
0 0 0



 →





1 0 −1
0 1 1
0 0 0



 .

Hence

(B + I )v = 0 ⇐⇒

{

x − z = 0,
y + z = 0.

The general solution is x = t, y = −t, z = t, where t ∈ R.
In particular, v1 = (1,−1, 1) is an eigenvector of B associated
with the eigenvalue −1.



Secondly, consider the case λ = 1. The row reduction yields

B − I =





0 2 0

1 0 1

0 2 0



 →





1 0 1

0 2 0

0 2 0



 →





1 0 1

0 1 0

0 2 0



 →





1 0 1

0 1 0

0 0 0



.

Hence

(B − I )v = 0 ⇐⇒

{

x + z = 0,
y = 0.

The general solution is x = −t, y = 0, z = t, where t ∈ R.
In particular, v2 = (−1, 0, 1) is an eigenvector of B associated
with the eigenvalue 1.



Finally, consider the case λ = 3. The row reduction yields

B−3I =





−2 2 0
1 −2 1
0 2 −2



→





1 −1 0
1 −2 1
0 2 −2



→





1 −1 0
0 −1 1
0 2 −2





→





1 −1 0
0 1 −1
0 2 −2



 →





1 −1 0
0 1 −1
0 0 0



 →





1 0 −1
0 1 −1
0 0 0



 .

Hence

(B − 3I )v = 0 ⇐⇒

{

x − z = 0,
y − z = 0.

The general solution is x = t, y = t, z = t, where t ∈ R.
In particular, v3 = (1, 1, 1) is an eigenvector of B associated
with the eigenvalue 3.



Problem 4. Let B =





1 2 0
1 1 1
0 2 1



.

(iii) Is there a basis for R
3 consisting of eigenvectors of B?

Explain.

The vectors v1 = (1,−1, 1), v2 = (−1, 0, 1), and
v3 = (1, 1, 1) are eigenvectors of the matrix B belonging to
distinct eigenvalues. Therefore these vectors are linearly
independent. It follows that v1, v2, v3 is a basis for R

3.

Alternatively, the existence of a basis for R
3 consisting of

eigenvectors of B already follows from the fact that the matrix
B has three distinct eigenvalues.



Problem 4. Let B =





1 2 0
1 1 1
0 2 1



.

(iv) Find a diagonal matrix D and an invertible matrix U such
that B = UDU−1.

Basis of eigenvectors: v1 = (1,−1, 1), v2 = (−1, 0, 1),
v3 = (1, 1, 1). We have that B = UDU−1, where

D =





−1 0 0
0 1 0
0 0 3



 , U =





1 −1 1
−1 0 1

1 1 1



 .

Here D is the matrix of the linear operator L : R
3 → R

3,
L(x) = Bx with respect to the basis v1, v2, v3 while U is the
transition matrix from v1, v2, v3 to the standard basis.



Problem 4. Let B =





1 2 0
1 1 1
0 2 1



.

(v) Find all eigenvalues of the matrix B2.

Suppose that Bv = λv for some v ∈ R
3 and λ ∈ R. Then

B2v = B(Bv) = B(λv) = λ(Bv) = λ2v.

It follows that (−1)2 = 12 = 1 and 32 = 9 are eigenvalues of
the matrix B2. These are the only eigenvalues of B2.

Indeed, assume that B2v = µv, where v 6= 0. We have
v = r1v1 + r2v2 + r3v3 for some r1, r2, r3 ∈ R

3. Then
B2v = r1(B

2v1) + r2(B
2v2) + r3(B

2v3) = r1v1 + r2v2 + 9r3v3,
µv = µr1v1 + µr2v2 + µr3v3.

=⇒ r1 = µr1, r2 = µr2, 9r3 = µr3
=⇒ (µ − 1)r1 = (µ − 1)r2 = (µ − 9)r3 = 0
=⇒ µ = 1 or µ = 9



Bonus Problem 5. Solve the following system of
differential equations (find all solutions):















dx
dt

= x + 2y ,

dy

dt
= x + y + z ,

dz
dt

= 2y + z .

Let v = (x , y , z). Then the system can be
rewritten in vector form

dv

dt
= Bv, where B =





1 2 0
1 1 1
0 2 1



.



Matrix B admits a basis of eigenvectors:
v1 = (1,−1, 1), v2 = (−1, 0, 1), v3 = (1, 1, 1).
We have Bv1 = −v1, Bv2 = v2, Bv3 = 3v3.

The vector-function v(t) is uniquely represented as
v(t) = r1(t)v1 + r2(t)v2 + r3(t)v3, where r1(t),
r2(t), and r3(t) are scalar functions.

dv
dt

= dr1
dt

v1 + dr2
dt

v2 + dr3
dt

v3,

Bv = r1Bv1+r2Bv2+r3Bv3 = −r1v1+r2v2+3r3v3.

dv

dt
= Bv ⇐⇒











dr1
dt

= −r1,
dr2
dt

= r2,
dr3
dt

= 3r3.



The general solution: r1(t) = c1e
−t , r2(t) = c2e

t ,
r3(t) = c3e

3t , where c1, c2, c3 are arbitrary
constants.

Thus v(t) = r1(t)v1 + r2(t)v2 + r3(t)v3 =
= c1e

−t(1,−1, 1) + c2e
t(−1, 0, 1) + c3e

3t(1, 1, 1).











x(t) = c1e
−t − c2e

t + c3e
3t ,

y(t) = −c1e
−t + c3e

3t ,

z(t) = c1e
−t + c2e

t + c3e
3t .


