MATH 311-504
Topics in Applied Mathematics

Lecture 2-13:
Review for Test 2.



Topics for Test 2

Vector spaces and linear transformations (Williamson/Trotter
3.1-3.4)

e Vector spaces. Subspaces.
e Linear mappings. Matrix transformations.

e Span. Image and null-space.

e Linear independence (especially in functional spaces).

Basis, dimension, coordinates (Williamson/Trotter 3.5, 3.6C)

e Basis of a vector space. Dimension.
e Matrix of a linear transformation.
e Change of coordinates.

Eigenvalues and eigenvectors (Williamson/Trotter 3.6)

e FEigenvalues, eigenvectors, eigenspaces.
e Characteristic equation of a matrix.
e Bases of eigenvectors, diagonalization.



Sample problems for Test 2

Problem 1 (20 pts.) Determine which of the
following subsets of R3 are subspaces. Briefly
explain.

(i) The set S; of vectors (x,y,z) € R? such that
xyz = 0.

(ii) The set S, of vectors (x,y,z) € R3 such that
x+y+z=0.

(iii) The set S3 of vectors (x,y,z) € R® such that
y?+ 22 =0.

(iv) The set S; of vectors (x,y,z) € R? such that
y2 — 722 =0.



Sample problems for Test 2

Problem 2 (20 pts.) Let M;,(R) denote the
space of 2-by-2 matrices with real entries. Consider

a linear operator L : Mj(R) — Mj,(R) given by

G0)-GOC)

Find the matrix of the operator L with respect to
the basis

10 0 1 00 00
50 0) & (00} 5-(10) 5-(0 1)



Sample problems for Test 2

Problem 3 (30 pts.) Consider a linear operator
f:R3 — R3, f(x)= Ax, where

1 -1 -2
A=1-2 1 3
-1 0 1

(i) Find a basis for the image of f.
(ii) Find a basis for the null-space of f.



Sample problems for Test 2

Problem 4 (30 pts.) Let B =

O = =
N =N
= = O

(i) Find all eigenvalues of the matrix B.

(ii) For each eigenvalue of B, find an associated
eigenvector.

(iiii) Is there a basis for R? consisting of
eigenvectors of B? Explain.

(iv) Find a diagonal matrix D and an invertible
matrix U such that B = UDUL.

(v) Find all eigenvalues of the matrix B2.



Sample problems for Test 2

Bonus Problem 5 (20 pts.) Solve the following
system of differential equations (find all solutions):
( dx

s 2

d
9 d—{=X+y+z,

dz 2y &
— = Z.
L dt y




Problem 1. Determine which of the following
subsets of R3 are subspaces. Briefly explain.

A subset of R? is a subspace if it is closed under addition and
scalar multiplication. Besides, the subset must not be empty.

(i) The set S; of vectors (x,y,z) € R® such that
xyz = 0.

(0,0,0) € S; = S; is not empty.

xyz=0 = (rx)(ry)(rz) = r*xyz = 0.

Thatis, v=(x,y,z) €S = rv=(rx,ry,rz) € 5;.
Hence S; is closed under scalar multiplication.

However S; is not closed under addition.
Counterexample: (1,1,0)+(0,0,1) = (1,1,1).



Problem 1. Determine which of the following
subsets of R3 are subspaces. Briefly explain.

A subset of R? is a subspace if it is closed under addition and
scalar multiplication. Besides, the subset must not be empty.

(ii) The set S, of vectors (x,y,z) € R such that
x+y+z=0.

(0,0,0) € S, = S, is not empty.
X+y+z=0 = mx+ry+rz=r(x+y+2z)=0.
Hence S, is closed under scalar multiplication.
x+y+z=x4+y +727=0 =
(x+X)++y)+(@z+2)=(x+y+2)+(X'+y'+2) =0
Thatis, v=(x,y,2), vV .=(x,y,2z) €5,

= v+V =(x+x,y+y,z+27)eS,.
Hence S, is closed under addition.



(iii) The set S3 of vectors (x,y,z) € R? such that
y2+ 22 =0.

y24+z22=0 < y=2z=0.
S3 is a nonempty set closed under addition and scalar
multiplication.

(iv) The set S; of vectors (x,y,z) € R? such that
y?—2z2=0.
S, is a nonempty set closed under scalar multiplication.

However S, is not closed under addition.
Counterexample: (0,1,1)+(0,1,—1) = (0,2,0).



Problem 2. Let M;,(RR) denote the vector space of 2x2
matrices with real entries. Consider a linear operator
L: Myo(R) — Myo(R) given by

(Zu)-GHC)

Find the matrix of the operator L with respect to the basis
10 01 00 00
f-00) &= (00) 5-(10) &= (0 1)

Let M, denote the desired matrix.

By definition, M, is a 4x4 matrix whose columns are
coordinates of the matrices L(E;), L(Ey), L(E3), L(Es)
with respect to the basis Ej, B>, E3, E4.
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Thus the relation
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is equivalent to the relation
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Problem 3. Consider a linear operator f : R3 — R3,

1 -1 -2
f(x) = Ax, where A= -2 1 3
-1 0 1

(i) Find a basis for the image of f.

The image of f is spanned by columns of the matrix A:
vi = (1,-2,-1), v, =(—1,1,0), v3 =(-2,3,1).

1 -1 -2
detA=|-2 1 3 _—1‘_} _§‘+1‘_; _H:o.
-1 0 1

Hence vi, v, v3 are linearly dependent.

It is easy to observe that v, = v; + v3.

It follows that Span(vy,v,,v3) = Span(vy, v3).

Since the vectors v; and v3 are linearly independent, they form
a basis for the image of f.



Problem 3. Consider a linear operator f : R® — R3,

1 -1 -2
f(x) = Ax, where A= -2 1 3
-1 0 1

(ii) Find a basis for the null-space of f.

The null-space of f is the set of solutions of the vector
equation Ax = 0. To solve the equation, we convert the
matrix A to reduced row echelon form:

1 -1 —2 1 -1 —2 1 -1 —2
2 1 3| =0 -1 1) =0 -1 -1
1 0 1 0 -1 —1 0 0 0

1 -1 —2 10 —

~lo 1 1|l =(01 1 {X_ZZO’
0 0 0 00 0 y+z=0.

General solution: (x,y,z) = (t,—t,t) =t(1,-1,1), t € R.
Hence the null-space is a line and (1, —1,1) is its basis.



120
Problem 4. Let B= |1 1 1

0 21
(i) Find all eigenvalues of the matrix B.

The eigenvalues of B are roots of the characteristic equation
det(B — Al) = 0. We obtain that

1-X 2 0

det(B—A)=| 1 1-x 1
0 21—

=(1=A)°=2(1-X)—-2(1-X)=(1-N)(1-X1)>-4)
=(1-=N(1-N=2)((1=X)+2)==(A=1)A+1)(A-3).

Hence the matrix B has three eigenvalues: —1, 1, and 3.



2
Problem 4. let B = 1
2
f

= =
mO
QO Rk =0

(ii) For each eigenvalue of B, find an associated eigenvector.
An eigenvector v = (x,y,z) of the matrix B associated with

an eigenvalue \ is a nonzero solution of the vector equation

1-XA 2 0 x 0
(B=AMw=0 < | 1 1-x 1 y| =10
0 2 1-x)\z 0

To solve the equation, we convert the matrix B — A/ to
reduced row echelon form.



First consider the case A = —1. The row reduction yields

2 20 110

B+I=[12 1| -1 21

0 2 2 0 2 2
110 110 10 -1
—-(01 1) —=(01 1| —=(01 1
0 2 2 00O 00 O

Hence

x—z=0,
(B+IHhv=0 <= {y+z:0'

The general solution is x =t, y = —t, z=1t, where t € R.
In particular, v; = (1,—1,1) is an eigenvector of B associated

with the eigenvalue —1.



Secondly, consider the case A = 1. The row reduction yields

0 20 1 01 1 01 1 01
B—-I=l101]—-[020]—-(010)]—-([010].
0 20 0 20 0 2 0 0 0O

Hence

- x+z=0,
(B—Iv=0 <— {yzo‘

The general solution is x = —t, y =0, z=1t, where t € R.

In particular, v, = (—1,0,1) is an eigenvector of B associated
with the eigenvalue 1.



Finally, consider the case A = 3. The row reduction yields

-2 2 0 1 -1 0 1 -1 0
B3/ = 1 -2 1]—=1]1 -2 1]—=10 -1 1
o 2 -2 0o 2 -2 0o 2 -2
1 -1 0 1 -1 0 1 0 -1
—-!/0 1 -1})] —-10 1 -1] —1|0 1 -1
0o 2 -2 0O 0 O 00 O
Hence
(B-3IWw=0 <= x—-z=0,
y—z=0.

The general solutionis x =t, y =t, z=1t, where t € R.
In particular, v3 = (1,1,1) is an eigenvector of B associated
with the eigenvalue 3.



Problem 4. Let B =

O = =
N =N
== O

(iii) Is there a basis for R® consisting of eigenvectors of B?
Explain.

The vectors v; = (1,-1,1), v, =(—1,0,1), and

vz = (1,1,1) are eigenvectors of the matrix B belonging to
distinct eigenvalues. Therefore these vectors are linearly
independent. It follows that vy, v>,vs3 is a basis for R3.

Alternatively, the existence of a basis for R® consisting of
eigenvectors of B already follows from the fact that the matrix
B has three distinct eigenvalues.



Problem 4. Let B =

O = =
N =N
== O

(iv) Find a diagonal matrix D and an invertible matrix U such
that B = UDU™*.

Basis of eigenvectors: v; = (1,—1,1), v, = (—1,0,1),
v3 = (1,1,1). We have that B = UDU™!, where

~1 00 1 -1 1
D= o10], U=[|-1 01
00 3 1 11

Here D is the matrix of the linear operator L : R3 — R3,
L(x) = Bx with respect to the basis vi, vy, v3 while U is the
transition matrix from vy, v,, v3 to the standard basis.



Problem 4. Let B =

O = =
N =N
— = O

(v) Find all eigenvalues of the matrix B2,

Suppose that Bv = \v for some v € R® and A € R. Then
B?v = B(Bv) = B(Av) = A\(Bv) = \?v.

It follows that (—1)2 =12 =1 and 3?2 =9 are eigenvalues of
the matrix B2. These are the only eigenvalues of B2.

Indeed, assume that B?v = uv, where v # 0. We have

V = vy + nvs + rvs for some r, rn, s € R3. Then

BZV = rl(B2v1) + r2(BQV2) + f3(BZV3) = nvVvi + KV + 9f3V3,
UV = V1 + WhVs + [1r3V3.

= = puh, n=pn, 93 =pun

— (p—n=(p—-1r=(pr-9rn=20
— p=1lor p=9



Bonus Problem 5. Solve the following system of
differential equations (find all solutions):

dx

E:X—i_zya
d
d{—x+y+z
$:2y—|—z.

Let v =(x,y,z). Then the system can be
rewritten in vector form

dv 120
d—:Bv, where B=11 11
t 021



Matrix B admits a basis of eigenvectors:

V] = (1, —1, 1), Vy = (—1,0, 1), V3 = (1, 1, 1)
We have Bv; = —vyi, Bvy, = vy, Bvz = 3vs.

The vector-function v(t) is uniquely represented as

v(t) = rn(t)vi + rn(t)va + r3(t)vs, where r(t),
r(t), and r3(t) are scalar functions.

dv _ dn dry drs
gt — atV1 T g V2t Vs
Bv = nBvi+rnBvy+rBv; = —nvi+mnvy+3rvs.
% = —n,
dv dr.
— =Bv — Z=n
dt dt )
dr3 _
dr 3/’3



The general solution: ri(t) = cie™f, n(t) = el
r(t) = cze®, where ¢, o, c3 are arbitrary
constants.

Thus v(t) = n(t)vi + n(t)ve + n(t)vz =
=ce t(1,-1,1) + ce’(—1,0,1) + cze3*(1,1,1).

x(t) = cre™t — et + e,

y(t) = —ce”t + e,
z(t) = cre”t + qet + et



