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Lecture 2-4:
Span (continued).

Image and null-space.



Subspaces of vector spaces

Definition. A vector space V0 is a subspace of a
vector space V if V0 ⊂ V and the linear operations
on V0 agree with the linear operations on V .

Examples.

• F (R): all functions f : R → R

• C (R): all continuous functions f : R → R

C (R) is a subspace of F (R).

• P : polynomials p(x) = a0 + a1x + · · · + anx
n

• Pn: polynomials of degree at most n

Pn is a subspace of P .



If S is a subset of a vector space V then S inherits
from V addition and scalar multiplication. However
S need not be closed under these operations.

Proposition A subset S of a vector space V is a
subspace of V if and only if S is nonempty and
closed under linear operations, i.e.,

x, y ∈ S =⇒ x + y ∈ S ,

x ∈ S =⇒ rx ∈ S for all r ∈ R.

Remarks. The zero vector in a subspace is the
same as the zero vector in V . Also, the subtraction
in a subspace is the same as in V .



System of linear equations:














a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm

Any solution (x1, x2, . . . , xn) is an element of R
n.

Theorem The solution set of the system is a
subspace of R

n if and only if all equations in the
system are homogeneous (all bi = 0).



Let V be a vector space and v1, v2, . . . , vn ∈ V .
Consider the set L of all linear combinations
r1v1 + r2v2 + · · · + rnvn, where r1, r2, . . . , rn ∈ R.

Theorem L is a subspace of V .

Definition. The subspace L is called the span of
vectors v1, v2, . . . , vn and denoted

Span(v1, v2, . . . , vn).

If Span(v1, v2, . . . , vn) = V , then the set
{v1, v2, . . . , vn} is called a spanning set for V .

Remark. Span(v1, v2, . . . , vn) is the minimal
subspace of V that contains v1, v2, . . . , vn.



Examples. • tx, a line through the origin in R
n, is

the span of one vector x 6= 0.

• tx + sy, a plane through the origin in R
n, is the

span of two linearly independent vectors x and y.

P : polynomials p(x) = a0 + a1x + · · · + anx
n

• The span of {1, x , x2} is the space P2 of
polynomials of degree at most 2.

• The span of {1, x − 1, (x − 1)2} is again P2.

• The span of {1, x , x2
, . . . } is the whole space P .

• The span of {x , x2
, x3

, . . . } is the subspace of
polynomials p(x) with a root at zero: p(0) = 0.

• The span of {1, x2
, x4

, . . . } is the subspace of
even polynomials: p(−x) = p(x).



Examples of subspaces of M2,2(R): A =

(

a b

c d

)

• diagonal matrices: b = c = 0

• upper triangular matrices: c = 0

• lower triangular matrices: b = 0

• symmetric matrices (AT = A): b = c

• anti-symmetric matrices (AT = −A):
a = d = 0 and c = −b

• matrices with zero trace: a + d = 0
(trace = the sum of diagonal entries)



Examples of subspaces of M2,2(R):

• The span of

(

1 0
0 0

)

and

(

0 0
0 1

)

consists of all

matrices of the form

a

(

1 0
0 0

)

+ b

(

0 0
0 1

)

=

(

a 0
0 b

)

.

This is the subspace of diagonal matrices.

• The span of

(

1 0
0 0

)

,

(

0 0
0 1

)

, and

(

0 1
1 0

)

consists of all matrices of the form

a

(

1 0
0 0

)

+ b

(

0 0
0 1

)

+ c

(

0 1
1 0

)

=

(

a c

c b

)

.

This is the subspace of symmetric matrices.



Examples of subspaces of M2,2(R):

• The span of

(

0 −1
1 0

)

is the subspace of

anti-symmetric matrices.

• The span of

(

1 0
0 0

)

,

(

0 0
0 1

)

, and

(

0 1
0 0

)

is the subspace of upper triangular matrices.

• The span of

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

is the entire space M2,2(R).



Image and null-space

Let V1, V2 be vector spaces and f : V1 → V2 be a
linear mapping.

V1: the domain of f

V2: the range of f

Definition. The image of f (denoted Im f ) is the
set of all vectors y ∈ V2 such that y = f (x) for
some x ∈ V1. The null-space of f (denoted
Null f ) is the set of all vectors x ∈ V1 such that
f (x) = 0.

Theorem The image of f is a subspace of the
range. The null-space of f is a subspace of the
domain.



f : R
n → R

m, f (x) = Ax, A an m-by-n matrix.

Theorem Im f is spanned by columns of A.

Proof: Let x = (x1, x2, . . . , xn) ∈ R
n. Then

x = x1e1 + x2e2 + · · · + xnen,

where e1, . . . , en is the standard basis.

=⇒ f (x) = x1f (e1) + x2f (e2) + · · · + xnf (en).

Hence the image of f is spanned by vectors
f (e1), f (e2), . . . , f (en), which are columns of A.

The null-space of f is the solution set of a system
of linear equations, Ax = 0.

Proposition Null f is not changed when we apply
elementary row operations to the matrix A.



Examples

• f : R
3 → R

3, f





x

y

z



 =





1 0 −1
1 2 −1
1 0 −1









x

y

z



.

Im f is spanned by vectors (1, 1, 1), (0, 2, 0), and
(−1,−1,−1). It follows that Im f is the plane
t(1, 1, 1) + s(0, 1, 0).

To find Null f , we convert A to reduced form:




1 0 −1
1 2 −1
1 0 −1



 →





1 0 −1
0 2 0
0 0 0



 →





1 0 −1
0 1 0
0 0 0





Hence (x , y , z) ∈ Null f if x − z = y = 0.
It follows that Null f is the line t(1, 0, 1).



• f : M2(R) → M2(R), f (A) = A + AT .

f

(

a b

c d

)

=

(

2a b + c

b + c 2d

)

.

Null f is the subspace of anti-symmetric matrices,
Im f is the subspace of symmetric matrices.

• g : M2(R) → M2(R), g(A) =





0 1
0 0



A.

g

(

a b

c d

)

=

(

c d

0 0

)

.

Im g is the subspace of matrices with the zero
second row, Null g is the same as the image
=⇒ g(g(A)) = O.



P : the space of polynomials.
Pn: the space of polynomials of degree at most n.

• D : P → P, (Dp)(x) = p′(x).

p(x) = a0 + a1x + a2x
2 + a3x

3 + · · · + anx
n

=⇒ (Dp)(x) = a1 + 2a2x + 3a3x
2 + · · · + nanx

n−1

The image of D is the entire P , Null D = P0 =
the subspace of constants.

• D : P3 → P3, (Dp)(x) = p′(x).

p(x) = ax3+bx2+cx+d =⇒ (Dp)(x) = 3ax2+2bx+c

The image of D is P2, Null D = P0.


