MATH 311-504
Topics in Applied Mathematics

Lecture 2-6:
Isomorphism.
Linear independence (revisited).



Definition. A mapping f : V; — V5 is one-to-one
if it maps different elements from V; to different
elements in V,. The map f is onto if any element
y € V, is represented as f(x) for some x € V.

If the mapping f is both one-to-one and onto,
then the inverse f~1: V, — V; is well defined.

Now let V4, V, be vector spaces and f : Vi — V)
be a linear mapping.

Theorem (i) The linear mapping f is one-to-one if
and only if Nullf = {0}.

(ii) The linear mapping f is onto if Imf = V5.

(iii) If the linear mapping f is both one-to-one and
onto, then the inverse mapping f~! is also linear.



Examples

o F:R2ZR3 f(x,y)=(x,y,x).
Null f = {0}, Imf is the plane x = z.

The inverse mapping f~!:Imf — R? is given by
(x,y,2) = (x, ).

o g:R? - R?2 g(x)= Ax, where A= (i i)

g is one-to-one and onto.

The inverse mapping is given by g7 1(y) = A ly.



o L:P—P, (Lp)(x)=p(x+1).
L is one-to-one and onto.
The inverse is given by (L7!p)(x) = p(x — 1).

e M:P — P, (Mp)(x)=xp(x).
NullM = {0}, Im M = {p(x) € P : p(0) = 0}.

The inverse mapping M~ : Im M — P is given by
(M~p)(x) = x~'p(x).

« PP, (lp)(x):/oxp(s)ds.

Null/ = {0}, Im/ = {p(x) € P: p(0) =0}.
The inverse mapping /=% : Im/ — P is given by
(I7tp)(x) = P'(x).



Isomorphism

Definition. A linear mapping f : V; — V, is called
an isomorphism of vector spaces if it is both
one-to-one and onto.

Two vector spaces Vi and V, are called isomorphic
if there exists an isomorphism f : Vj — V..

The word “isomorphism” applies when two complex
structures can be mapped onto each other, in such
a way that to each part of one structure there is a
corresponding part in the other structure, where
“corresponding” means that the two parts play
similar roles in their respective structures.



Examples of isomorphisms
e M;y,(R) is isomorphic to R*.
: a b
Isomorphism: (c d) — (a, b, c,d).

e Mj3(R) is isomorphic to M3,(R).

a, a a 2 by

Isomorphism: 192 93, a b
by by bs

a3 b3

e The plane z = 0 in R3 is isomorphic to R?.
Isomorphism: (x,y,0) — (x, y).

e P, is isomorphic to R™!.
Isomorphism: ag+ayx+ - -+ +a,x" — (ao, a1, - - -, an)-



Classification problems of linear algebra

Problem 1 Given vector spaces V; and V>,
determine whether they are isomorphic or not.

Problem 2 Given a vector space V/, determine
whether V is isomorphic to R"” for some n > 1.

Problem 3 Show that vector spaces R” and R”
are not isomorphic if m # n.



Linear independence

Definition. Let V be a vector space. Vectors
Vi,V ..., Vi € V are called linearly dependent if they
satisfy a relation

nvy+ vy + -+ nv =0,

where the coefficients ry,...,r € R are not all equal to zero.
Otherwise the vectors vy, v, ..., v, are called linearly
independent. That is, if

r1v1_|_r2v2_|_...+rkvk:0 > r]_:"':rk:O'

An infinite set S C V is linearly dependent if there are
some linearly dependent vectors vy, ...,v, € S. Otherwise S
is linearly independent.

Theorem Vectors vq,...,v, € V are linearly dependent if
and only if one of them is a linear combination of the other
k — 1 vectors.



Examples of linear independence
e Vectors e; = (1,0,0), e; = (0,1,0), and
es = (0,0,1) in R3,

xe; +ye,+ze3=0 = (x,y,2)=0

e Matrices Ej; = (é 8> E, = <8 é)

00 00
E21— <1 O), and E22— (O 1)

aE11+bE12+CE21+dE22:O — <i Z):O

= a=b=c=d=0



Examples of linear independence

e Polynomials 1,x,x2,...,x".

ag + aix + axx®> + -+ a,x" = 0 identically
= g3,=0 for 0<i<n

e The infinite set {1,x,x%,...,x",...}.

Y

e Polynomials pi(x) =1, po(x) =x—1, and
po(x) = (x — 1)

a1p1(x) + axpa(x) + a3p3(x) = a1 + as(x — 1) + as(x — 1)? =
= (a1 — a + a3) + (a2 — 2a3)x + asx>.

Hence aipi(x)+ axpa(x) + asps(x) = 0 identically

— g —a&ataz=a—2a3=a3=0

— g =a=a=0



Problem 1. Show that functions 1, €%, and e *
are linearly independent in F(R).

Proof: Suppose that a+ be* + ce™™ = 0 for some
a,b,c € R. We have to show that a= b =c =0.
x=0 = a+b+c=0

x=1= at+bet+cel=0

x=-1 = a+bel4+ce=0

11 1
The matrix of the systemis A= |1 e !
1 el e

detA=e?>—e2?—2e+2e =
—(e—eHetel)—2e—el)=
— (e—e ) (e+e1-2) = (e—e1)(el/2—e/2)2 £ 0,

Hence the system has a unique solution a = b =c = 0.



2x

Problem 2. Show that functions €, €%¥, and e3*

are linearly independent in C*°(R).

Suppose that ae* + be?* + ce>* =0 for all x € R,
where a, b, ¢ are constants. We have to show that
a=b=c=0.
Differentiate this identity twice:

ae* + 2be® + 3ce3* = 0,

ae* + 4be®* 4 9ce® = 0.

It follows that Av = 0, where
111 aeX
1 23], v=|be*
1 409 ce3x

A—
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To compute det A, subtract the 1st row from the
2nd and the 3rd rows:

111 111 111
123 =|012|/=|012 :‘
1409 1409 0 38

1 2
5| =2

Since A is invertible, we obtain
Av=0 — v=0 = aeX=be*=ce®>*=0
— a=b=c=0



X

Problem 3. Show that functions x, €%, and e~
are linearly independent in C(R).

Suppose that ax + be* + ce ™ =0 for all x € R, where
a, b, ¢ are constants. We have to show that a=b=c =0.
Divide both sides of the identity by e*:

axe ™™ + b+ ce > = 0.
The left-hand side approaches b as x — +o0. — b=0
Now ax +ce ™™ =0 for all x € R. For any x # 0 divide
both sides of the identity by x:

a+coxle™™=0.

The left-hand side approaches a as x — +oc. = a=0

Now ce™* =0 = c=0.



