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Topics in Applied Mathematics

Lecture 2-7:
Basis and coordinates.



Isomorphism

Definition. A linear mapping f : V; — V, is called
an isomorphism of vector spaces if it is both
one-to-one and onto.

Two vector spaces Vi and V, are called isomorphic
if there exists an isomorphism f : Vj — V..

The word “isomorphism” applies when two complex
structures can be mapped onto each other, in such
a way that to each part of one structure there is a
corresponding part in the other structure, where
“corresponding” means that the two parts play
similar roles in their respective structures.



Examples of isomorphisms
e M;y,(R) is isomorphic to R*.
: a b
Isomorphism: (c d) — (a, b, c,d).

e Mj3(R) is isomorphic to M3,(R).
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Isomorphism: 192 93, a b
by by bs

a3 b3

e The plane z = 0 in R3 is isomorphic to R?.
Isomorphism: (x,y,0) — (x, y).

e P, is isomorphic to R™!.
Isomorphism: ag+ayx+ - -+ +a,x" — (ao, a1, - - -, an)-



Classification problems of linear algebra

Problem 1 Given vector spaces V; and V>,
determine whether they are isomorphic or not.

Problem 2 Given a vector space V/, determine
whether V is isomorphic to R"” for some n > 1.

Problem 3 Show that vector spaces R” and R”
are not isomorphic if m # n.



Linear independence

Definition. Let V be a vector space. Vectors
Vi,Vo,...,Vx € V are called linearly dependent if
they satisfy a relation

nvi+ vy + -+ nv = 0,

where the coefficients ri,...,r € R are not all
equal to zero. Otherwise the vectors vi, vy, ..., Vg
are called linearly independent. That is, if
nvit+nvy+ - +nvy =0 — n=---=r=0.

An infinite set S C V is linearly dependent if
there are some linearly dependent vectors
Vi,...,Vx € S. Otherwise S is linearly
independent.



Theorem Vectors vi,...,v, € V are linearly
dependent if and only if one of them is a linear
combination of the other k — 1 vectors.

Examples of linear independence:

e Vectors e; = (1,0,0,...,0),
e = (0,1,0,...,0),..., e, = (0,0,...,0,1) in R".
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e Polynomials 1,x,x%,...,x",....



X

Problem. Show that functions x, €%, and e * are

linearly independent in C(R).

Suppose that ax + be* + ce ™ =0 for all x € R, where
a, b, ¢ are constants. We have to show that a=b=c =0.
Divide both sides of the identity by e*:

axe ™™ + b+ ce > = 0.
The left-hand side approaches b as x — +o0. — b=0
Now ax +ce ™™ =0 for all x € R. For any x # 0 divide
both sides of the identity by x:

a+coxle™™ =0.

The left-hand side approaches a as x — +oc. = a=0

Now ce™* =0 = c=0.



Theorem 1 Let A\, \y, ..., A\ be distinct real
numbers. Then the functions e’ et .. . eMx
are linearly independent.

Theorem 2 The set of functions
{x"e™ | NeR, m=0,1,2,...}

is linearly independent.



Spanning sets and linear dependence

Let vg,vq,...,Vv, be vectors from a vector space V.
Proposition If vg is a linear combination of vectors
Vi,...,V, then

Span(vg, V1, ..., Vk) = Span(vy, ..., V).

Indeed, if vg = vy + -+ + rvy, then
tovo + t1vy + - - - + Vg =
= (t()l’l + t1)V1 + -+ (t()l’k + tk)Vk.

Corollary Any spanning set for a vector space is
minimal if and only if it is linearly independent.



Basis

Definition. Let V be a vector space. A linearly
independent spanning set for V is called a basis.

Suppose that a set S C V is a basis for V.

“Spanning set” means that any vector v € V can be
represented as a linear combination

V = vy + nvy + -+ Vg,
where vy, ..., v, are distinct vectors from S and

r,...,re € R, “Linearly independent” implies that the above
representation is unique:

v:r1v1+r2v2—|—---—|—rkvk:r{v1+r§v2+---+r[<vk
/ / / .
= (h—nfvi+(nr—Bva+---+(n—r)vk=0
— n—n=n—r=...=rn—1r=>0



Examples. e Standard basis for R":
e; =(1,0,0,...,0,0), e2=(0,1,0,...,0,0),...,
e, =(0,0,0,...,0,1).

Indeed, (xi,X2,...,X,) = X1€1 + X2€3 + - - - + X,€,.
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form a basis for M »(R).
a b 10 01 0 00
(22) =20 0) =25 o) =<2 0) +(a 7).

e Polynomials 1, x,x“,...,x" form a basis for

2
Pn:{a0+a1x+---+a,,x”:a;ER}.

o O

e The infinite set {1,x,x2,...,x",...} is a basis
for P, the space of all polynomials.



Problem Let v; =(2,5) and v, =(1,3). Show
that {vi,vp} is a basis for R?.

Linear independence is obvious: v; and v, are not parallel.

To show spanning, it is enough to represent vectors e; = (1,0)
and e; = (0,1) as linear combinations of v; and v,.

p— 1 pu—
€1 = NVi+hVy < { 2+ 1 <~ {rl 3

5n4+3n =0 rn=-b5
. 2l’1+f2:0 l’lz—].
€2 = VitV <= { 5 +3n =1 {r2 —
Thus e; =3v; —b5vy and ey, = —vy + 2v,.

Then (x,y) = xe; + ye; = x(3vy — 5va) + y(—v1 + 2v,)
= (3x — y)vi + (—5x + 2y)v,.



Let W be the set of all solutions of the ODE
y"(x) —y(x) =0. W is a subspace of the vector
space C*(R) since it is the null-space of the linear
operator L: C®(R) — C*(R), L(f)=f"—f.

W contains functions e, e™*,

hyperbolic sine sinhx = J(e¥ — ™), and

hyperbolic cosine coshx = Z(e* + e™).

We have that (sinhx)" = cosh x,
(cosh x)’ = sinhx, cosh?x — sinh?x = 1.

Proposition {e*,e >} and {cosh x, sinhx} are
two bases for W.



Proposition {e*,e >} and {cosh x, sinhx} are
two bases for W.

Proof: “Linear independence”: ¢e* and e~ are linearly
independent as shown earlier.

Further, cosh0 =1, sinh0 =0, cosh’0 = 0, sinh’0 = 1.

It follows that cosh x and sinh x are not scalar multiples of
each other.

“Spanning”: Take any function f € W. Consider a function
g(x) = acosh x + bsinh x, where a = f(0), b= f'(0).

We have g(0) = a, g’(0) = b.

The initial value problem y” —y =0, y(0) =a, y'(0)=0b
has a unique solution. Therefore f = g.

Thus f(x) = acosh x 4 bsinh x

= 3(e +e) + b(e¥ — ) = Hat b)e* + H(a— b)e~.



Basis and coordinates

If {vi,vo,...,v,} is a basis for a vector space V,
then any vector v € V' has a unique representation

V = X1V1 + XoVp + -+ - + XpVp,

where x; € R. The coefficients xq, x>,...,x, are
called the coordinates of v with respect to the
ordered basis vi, vy, ..., V.
The mapping

vector v + its coordinates (xi,xo, ..., Xp)

is a one-to-one correspondence between V and R”".
This correspondence is linear (hence it is an
isomorphism of V onto R").



