MATH 311-504
Topics in Applied Mathematics

Lecture 2-9:
Basis and dimension (continued).
Matrix of a linear transformation.



Basis and dimension

Definition. Let V be a vector space. A linearly
independent spanning set for V is called a basis.

Theorem Any vector space V has a basis. If V
has a finite basis, then all bases for V are finite and
have the same number of elements.

Definition. The dimension of a vector space V/,
denoted dim V/, is the number of elements in any of
its bases.



Examples. e dimR" = n

o M n(R): the space of mxn matrices
dim M, ,(R) = mn

e P, polynomials of degree at most n
dmP,=n+1

e P: the space of all polynomials
dimP = oo

e {0}: the trivial vector space

dim {0} =0



Bases for R”

Let vi,vs,..., v, be vectors in R".

Theorem 1 If m < n then the vectors
Vi,Vo,...,V, do not span R”".

Theorem 2 If m > n then the vectors
Vi,Vo,...,V, are linearly dependent.

Theorem 3 If m = n then the following
conditions are equivalent:

(i) {vi,vo,...,v,} is a basis for R”;

(ii) {v1,v2,...,v,} is a spanning set for R”;

(iii) {vi,v2,...,v,} is a linearly independent set.



Theorem Let S be a subset of a vector space V.
Then the following conditions are equivalent:

(i) S is a linearly independent spanning set for V,
i.e., a basis;

(ii) S is a minimal spanning set for V;

(iii) S is a maximal linearly independent subset of V.

“Minimal spanning set” means “remove any element
from this set, and it is no longer a spanning set”.

“Maximal linearly independent subset” means
“add any element of V' to this set, and it will
become linearly dependent”.



How to find a basis?

Theorem Let V be a vector space. Then

(i) any spanning set for V can be reduced to a

minimal spanning set;

(ii) any linearly independent subset of V' can be
extended to a maximal linearly independent set.

That is, any spanning set contains a basis, while any
linearly independent set is contained in a basis.

Approach 1. Get a spanning set for the vector
space, then reduce this set to a basis.

Approach 2. Build a maximal linearly independent
set adding one vector at a time.



21 0
Find the dimension of the image of f.

Example. f:R3 — R? f(x)= (1 L _1> X.

The image of f is spanned by columns of the
matrix: v; = (1,2), vo = (1,1), and v3 = (—1,0).
Observe that v3 = v; — 2v,. It follows that Im f is
spanned by vectors v; and v, alone. Clearly, vy and
v, are linearly independent. Hence {vi,vy} is a
basis for Im f and dimIm f = 2.

Alternatively, since v; and v, are linearly
independent, they constitute a basis for R2.
It follows that Im f = R? and dimIm f = 2.



Example. f:R3 — R? f(x)= (; 1 _(1)> X.

Find the dimension of the null-space of f.

The null-space of f is the solution set of the system

11 -1
(2 1 0)"_0'

To solve the system, we convert the matrix to
reduced form:

11 -1 1 1 -1 10 1
— —

21 0 0 -1 2 01 -2

Hence (x,y,z) € Nullf if x+z=y —2z=0.

General solution: (x,y,z) = (—t,2t,t), t € R.
Thus Null f is the line t(—1,2,1) and dim Null f = 1.



Example. L :Py— Py, (Lp)(x) = p(x)+ p(—x).
Find the dimensions of Im L and Null L.

p(x) = ag + arx + axx® + a3x> + agx*
= (Lp)(x) = 2ap + 2arx> + 2azx*.
Since {1, x, x%,x3,x*} is a basis for P, the image
of L is spanned by polynomials L1, Lx, Lx?, Lx3, Lx*.
[1=2, Lx*=2x% Lx* =2x* Lx = Lx3 =0.
Hence Im L is spanned by 1, x%, x*. Clearly, 1, x?, x
are linearly independent so that they form a basis
for ImL and dimIm L = 3.

The null-space of L consists of polynomials
aix + a3x>. That is, it is spanned by x and x3. Thus
{x,x3} is a basis for Null L and dimNull L = 2.
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Basis and coordinates

If {vi,vo,...,v,} is a basis for a vector space V,
then any vector v € V has a unique representation

V = XjV1 + XoV2 + - - - + XpV,
where x; € R. The coefficients xi, xo, . .., x, are

called the coordinates of v with respect to the
ordered basis vi, vy, ..., V.

The mapping

vector v + its coordinates (xi,Xp, ..., Xp)

provides a one-to-one correspondence between V
and R". Besides, this mapping is linear.



Matrix of a linear mapping

Let V., W be vector spaces and f : V — W be a linear map.
Let vq,vo,...,v, be a basis for V and g; : V — R” be the
coordinate mapping corresponding to this basis.

Let wi,wy, ..., w, be a basis for W and g : W — R"™ be
the coordinate mapping corresponding to this basis.

f

v — W
glJ{ lgz
R" — RM™

The composition gyofog; ! is a linear mapping of R” to R™.
It is represented as v — Av, where A is an mxn matrix.
A is called the matrix of f with respect to bases vy,...,v,

and wy,...,w,. Columns of A are coordinates of vectors
f(vi1),...,f(v,) with respect to the basis wy, ..., w,.



Examples. o D : P, — P1, (Dp)(x) = p'(x).

Let Ap be the matrix of D with respect to the bases
1,x,x* and 1,x. Columns of Ap are coordinates
of polynomials D1, Dx, Dx?® w.r.t. the basis 1, x.

010
D1=0 Dx=1, Dx* =2x — AD:(O 0 2)

o L:P,— Py (Lp)(x)=p(x+1).

Let A; be the matrix of L w.r.t. the basis 1, x, x2.

[1=1,Lx=1+x, Lx>=(x+1)>=1+2x+ x°.
111

— A =01 2

0 01



Problem. Consider a linear operator L : R? — R?,

X 11 X
()-61)C)
Find the matrix of L with respect to the basis
Vi = (3, 1), Vo = (2, 1)

Let N be the desired matrix. Columns of N are coordinates of
the vectors L(v;) and L(vy) w.r.t. the basis vy, v,.

)= o 1)(2) =) = (0 3)(2) - ()

Clearly, L(vp) = vi = 1v; + Ovs.

L(vl):avl—i—ﬁvQ ﬁ{@—i‘ﬁ:l

2 1
Thus N:<_1 0).



