MATH 311-504

Topics in Applied Mathematics

Lecture 3-11:

Fourier series.

Orthonormal bases

Standard basis for \mathbb{R}^n : $\mathbf{e}_1 = (1, 0, 0, \dots, 0)$, $\mathbf{e}_2 = (0, 1, 0, \dots, 0)$,..., $\mathbf{e}_n = (0, 0, 0, \dots, 1)$. It is an orthonormal system: $\mathbf{e}_i \cdot \mathbf{e}_j = 0$ if $i \neq j$, $|\mathbf{e}_i| = 1$. For any $\mathbf{x} \in \mathbb{R}^n$ we have $\mathbf{x} = (\mathbf{x} \cdot \mathbf{e}_1)\mathbf{e}_1 + (\mathbf{x} \cdot \mathbf{e}_2)\mathbf{e}_2 + \dots + (\mathbf{x} \cdot \mathbf{e}_n)\mathbf{e}_n$.

Let V be an n-dimensional vector space endowed with an inner product. Suppose $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an orthonormal basis for V: $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ if $i \neq j$, while $\langle \mathbf{v}_i, \mathbf{v}_i \rangle = 1$. Then for any $\mathbf{x} \in V$ we have

 $\mathbf{x} = \langle \mathbf{x}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{x}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \cdots + \langle \mathbf{x}, \mathbf{v}_n \rangle \mathbf{v}_n.$

Orthogonal systems

Now suppose that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is only an orthogonal basis for V. Then

$$\mathbf{x} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n.$$

If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal set without $\mathbf{0}$ that is not a basis, then the right-hand side is the orthogonal projection of \mathbf{x} onto $\mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$. Also, it is the best approximation of \mathbf{x} by linear combinations $c_1\mathbf{v}_1+c_2\mathbf{v}_2+\dots+c_n\mathbf{v}_n$ with respect to the distance

$$\operatorname{dist}(\mathbf{x}, \mathbf{y}) = \|\mathbf{y} - \mathbf{x}\| = \sqrt{\langle \mathbf{y} - \mathbf{x}, \mathbf{y} - \mathbf{x} \rangle}.$$

Orthogonal polynomials

 \mathcal{P} : the space of all polynomials. Suppose that \mathcal{P} is endowed with an inner product. Let P_0, P_1, P_2, \ldots be orthogonal polynomials relative to this inner product. Then for any $q \in \mathcal{P}$ we have

$$q(x) = \frac{\langle q, P_0 \rangle}{\langle P_0, P_0 \rangle} P_0(x) + \frac{\langle q, P_1 \rangle}{\langle P_1, P_1 \rangle} P_1(x) + \cdots$$

The right-hand side is not really a series since $\langle q, P_n \rangle = 0$ for $n > \deg q$.

$$f_1(x) = \sin x, \ f_2(x) = \sin 2x, \dots, \ f_n(x) = \sin nx, \dots$$

 $V = C[-\pi, \pi], \ \langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$

 f_1, f_2, \ldots is an orthogonal system.

For any function
$$F \in C[-\pi, \pi]$$
 consider a series
$$\frac{\langle F, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1(x) + \frac{\langle F, f_2 \rangle}{\langle f_2, f_2 \rangle} f_2(x) + \frac{\langle F, f_3 \rangle}{\langle f_2, f_2 \rangle} f_3(x) + \cdots$$

 $\langle f_n, f_m \rangle = \int_{-\infty}^{\infty} \sin(nx) \sin(mx) dx = \begin{cases} 0, & n \neq m, \\ \pi, & n = m. \end{cases}$

$$\frac{\langle F, f_1 \rangle}{\langle f_1, f_1 \rangle} f_1(x) + \frac{\langle F, f_2 \rangle}{\langle f_2, f_2 \rangle} f_2(x) + \frac{\langle F, f_3 \rangle}{\langle f_3, f_3 \rangle} f_3(x) + \cdots$$

$$= b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \ldots,$$

Theorem The above series converges to some function $G \in C[-\pi, \pi]$ with respect to the distance

where $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(y) \sin(ny) dy$.

$$\operatorname{dist}(f,g) = \|f - g\| = \left(\int_{-\pi}^{\pi} |f(x) - g(x)|^2 dx\right)^{1/2}.$$

Since sin(-nx) = -sin(nx), it follows that G(-x) = -G(x).

Example. $F(x) = e^x$.

In this case, the series converges to the function $G(x) = \sinh x$. Note that $G(x) = \frac{1}{2} (F(x) - F(-x))$.

$$h_1(x) = \cos x, \ h_2(x) = \cos 2x, \dots, \ h_n(x) = \cos nx, \dots$$

$$\langle h_n, h_m \rangle = \int_{-\pi}^{\pi} \cos(nx) \cos(mx) dx = \begin{cases} 0, & n \neq m, \\ \pi, & n = m. \end{cases}$$

 h_1, h_2, \ldots is an orthogonal system.

For any function
$$F \in C[-\pi, \pi]$$
 consider a series
$$\frac{\langle F, h_1 \rangle}{\langle h_1, h_1 \rangle} h_1(x) + \frac{\langle F, h_2 \rangle}{\langle h_2, h_2 \rangle} h_2(x) + \frac{\langle F, h_3 \rangle}{\langle h_3, h_3 \rangle} h_3(x) + \cdots$$

$$\frac{\langle F, h_1 \rangle}{\langle h_1, h_1 \rangle} h_1(x) + \frac{\langle F, h_2 \rangle}{\langle h_2, h_2 \rangle} h_2(x) + \frac{\langle F, h_3 \rangle}{\langle h_3, h_3 \rangle} h_3(x) + \cdots$$

$$= a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + \ldots,$$

where $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(y) \cos(ny) dy$.

Theorem The above series converges to some function $H \in C[-\pi, \pi]$ with respect to the distance $\operatorname{dist}(f, g) = \|f - g\|$.

Since $\cos(-nx) = \cos(nx)$, it follows that H(-x) = H(x). Since $\int_{-\pi}^{\pi} \cos(nx) dx = 0$, it follows that $\int_{-\pi}^{\pi} H(x) dx = 0$.

Example. $F(x) = e^x$.

In this case, the series converges to the function $H(x) = \cosh x - \pi^{-1} \sinh \pi$.

$$h_0(x) = 1$$
, $h_1(x) = \cos x$, ..., $h_n(x) = \cos nx$, ..., $f_1(x) = \sin x$, $f_2(x) = \sin 2x$, ..., $f_n(x) = \sin nx$, ...

This is an orthogonal system: $\langle h_0, h_0 \rangle = 2\pi$, $\langle h_n, h_n \rangle = \langle f_n, f_n \rangle = \pi$ for $n \geq 1$, while the other inner products are equal to 0.

This orthogonal system is **maximal**.

Fourier series

Definition. Fourier series is a series of the form

$$a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx.$$

To each integrable function $F:[-\pi,\pi]\to\mathbb{R}$ we associate a Fourier series such that

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(x) \, dx$$

and for $n \geq 1$,

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \cos nx \, dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(x) \sin nx \, dx.$$

Convergence theorems

Theorem 1 Fourier series of a continuous function on $[-\pi,\pi]$ converges to this function with respect to the distance

$$\operatorname{dist}(f,g) = \|f-g\| = \left(\int_{-\pi}^{\pi} |f(x)-g(x)|^2 dx\right)^{1/2}.$$

However convergence in the sense of Theorem 1 need not imply pointwise convergence.

Theorem 2 Fourier series of a smooth function on $[-\pi, \pi]$ converges pointwise to this function on the open interval $(-\pi, \pi)$.

Example. Fourier series of the function F(x) = x.

Example. Tourier series of the function
$$T(x) = x$$

 $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x \, dx = 0, \quad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos(nx) \, dx = 0.$

$$a_0 = \frac{1}{2\pi} \int_{-\pi} x \, dx = 0, \quad a_n = \frac{1}{\pi} \int_{-\pi} x \cos(nx) \, dx = 0$$

 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin(nx) dx = -\frac{1}{n\pi} \int_{-\pi}^{\pi} x (\cos nx)' dx$

 $= -\frac{1}{n\pi} x \cos(nx) \Big|_{-\pi}^{\pi} + \frac{1}{n\pi} \int_{-\pi}^{\pi} \cos nx \, dx$

 $= -\frac{1}{n\pi} \cdot 2\pi \cos(n\pi) = (-1)^{n+1} \frac{2}{\pi}.$

Example. Fourier series of the function F(x) = x.

$$2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin nx}{n}$$

$$= 2\left(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x + \cdots\right)$$

The series converges to the function F(x) for any $-\pi < x < \pi$.

For $x = \pi/2$ we obtain:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$