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Topics in Applied Mathematics

Lecture 3-13:

Fourier’s solution of the heat equation.
Review for the final exam.



Heat equation

Heat conduction in a rod is described by

one-dimensional heat equation:

cρ
∂u

∂t
=

∂

∂x

(

K0

∂u

∂x

)

+ Q

K0 = K0(x), c = c(x), ρ = ρ(x), Q = Q(x , t).

Assuming K0, c , ρ are constant (uniform rod) and

Q = 0 (no heat sources), we obtain

∂u

∂t
= k

∂2u

∂x2
,

where k = K0(cρ)−1 is called the thermal diffusivity.



Initial and boundary conditions

∂u

∂t
= k

∂2u

∂x2
, x1 ≤ x ≤ x2.

Initial condition: u(x , 0) = f (x), x1 ≤ x ≤ x2.

Examples of boundary conditions:

• u(x1, t) = u2(x2, t) = 0.

(constant temperature at the ends)

• ∂u
∂x

(x1, t) = ∂u
∂x

(x2, t) = 0.

(insulated ends)

• u(x1, t) = u(x2, t),
∂u
∂x

(x1, t) = ∂u
∂x

(x2, t).

(periodic boundary conditions)



Heat conduction in a thin circular ring



Initial-boundary value problem:

∂u

∂t
= k

∂2u

∂x2
, u(x , 0) = f (x) (−π ≤ x ≤ π),

u(−π, t) = u(π, t), ∂u
∂x

(−π, t) = ∂u
∂x

(π, t).

For any t ≥ 0 the function u(x , t) can be expanded

into Fourier series:

u(x , t) = A0(t)+
∑∞

n=1
(An(t) cos nx+Bn(t) sin nx).

Let’s assume that the series can be differentiated
term-by-term. Then

∂u
∂t

(x , t) = A′
0(t) +

∑∞

n=1
(A′

n(t) cos nx + B ′
n(t) sin nx),

∂2u
∂x2 (x , t) =

∑∞

n=1
(−n2)(An(t) cos nx + Bn(t) sin nx).



It follows that A′
0 = 0, A′

n = −n2kAn and

B ′
n = −n2kBn, n ≥ 1.

Solving these ODEs, we obtain

A0(t) = a0, An(t) = ane
−n2kt, Bn(t) = bne

−n2kt,

where ai , bj ∈ R. Thus

u(x , t) = a0 +
∑∞

n=1
e−n2kt(an cos nx + bn sin nx).

Observe that an, bn are Fourier coefficients of the
initial data f (x).



How do we solve the initial-boundary value problem?

∂u

∂t
= k

∂2u

∂x2
, u(x , 0) = f (x) (−π ≤ x ≤ π),

u(−π, t) = u(π, t), ∂u
∂x

(−π, t) = ∂u
∂x

(π, t).

• Expand the function f into Fourier series

f (x) = a0 +
∑∞

n=1
(an cos nx + bn sin nx).

• Write the solution:

u(x , t) = a0 +
∑∞

n=1
e−n2kt(an cos nx + bn sin nx).

J. Fourier, The Analytical Theory of Heat
(written in 1807, published in 1822)



Why does it work?

Let V denote the vector space of 2π-periodic

smooth functions on the real line.

Consider a linear operator L : V → V given by
L(F ) = kF ′′. Then the heat equation can be

represented as a linear ODE on the space V :

dF

dt
= L(F ).

It turns out that functions

1, cos x , cos 2x , . . . , sin x , sin 2x , . . .

are eigenfunctions of the operator L.



Topics for the final exam: Part I

• n-dimensional vectors, dot product, cross

product.

• Elementary analytic geometry: lines and planes.

• Systems of linear equations: elementary

operations, echelon and reduced form.

• Matrix algebra, inverse matrices.

• Determinants: explicit formulas for 2-by-2 and
3-by-3 matrices, row and column expansions,

elementary row and column operations.



Topics for the final exam: Part II

• Vector spaces (vectors, matrices, polynomials,
functional spaces).

• Bases and dimension.

• Linear mappings/transformations/operators.

• Subspaces. Image and null-space of a linear map.

• Matrix of a linear map relative to a basis.

Change of coordinates.

• Eigenvalues and eigenvectors. Characteristic
polynomial of a matrix. Bases of eigenvectors

(diagonalization).



Topics for the final exam: Part III

• Norms. Inner products.

• Orthogonal and orthonormal bases. The
Gram-Schmidt orthogonalization process.

• Orthogonal polynomials.

• Orthonormal bases of eigenvectors. Symmetric
matrices.

• Orthogonal matrices. Rotations in space.



Problem. Let f1, f2, f3, . . . be the Fibonacci
numbers defined by f1 = f2 = 1, fn = fn−1 + fn−2

for n ≥ 3. Find lim
n→∞

fn+1

fn
.

For any integer n ≥ 1 let vn = (fn+1, fn). Then
(

fn+2

fn+1

)

=

(

1 1

1 0

) (

fn+1

fn

)

.

That is, vn+1 = Avn, where A =

(

1 1

1 0

)

.

In particular, v2 = Av1, v3 = Av2 = A2v1,
v4 = Av3 = A3v1. In general, vn = An−1v1.



Characteristic equation of the matrix A:
∣

∣

∣

∣

1 − λ 1
1 −λ

∣

∣

∣

∣

= 0 ⇐⇒ λ2 − λ − 1 = 0.

Eigenvalues: λ1 = 1+
√

5

2
, λ2 = 1−

√
5

2
.

Let w1 = (x1, y1) and w2 = (x2, y2) be eigenvectors
of A associated with the eigenvalues λ1 and λ2.
Then w1,w2 is a basis for R

2.

In particular, v1 = (1, 1) = c1w1 + c2w2 for some
c1, c2 ∈ R. It follows that

vn = An−1v1 = An−1(c1w1 + c2w2)

= c1A
n−1w1 + c2A

n−1w2 = c1λ
n−1

1
w1 + c2λ

n−1

2
w2.



vn = c1λ
n−1

1
w1 + c2λ

n−1

2
w2

=⇒ fn = c1λ
n−1

1
y1 + c2λ

n−1

2
y2.

Recall that λ1 = 1+
√

5

2
, λ2 = 1−

√
5

2
.

We have λ1 > 1 and −1 < λ2 < 0.

Therefore
fn+1

fn
=

c1λ
n
1y1 + c2λ

n
2y2

c1λ
n−1

1
y1 + c2λ

n−1

2
y2

= λ1

c1y1 + c2(λ2/λ1)
ny2

c1y1 + c2(λ2/λ1)n−1y2

→ λ1

c1y1

c1y1

= λ1

provided that c1y1 6= 0.

Thus lim
n→∞

fn+1

fn
= λ1 = 1+

√
5

2
.


