MATH 311-504

Topics in Applied Mathematics

Lecture 3-1: Complex numbers. Complex eigenvalues.

Diagonalization

Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of *L* with respect to some basis is diagonal;
- there exists a basis for *V* formed by eigenvectors of *L*.

The operator *L* is **diagonalizable** if it satisfies these conditions.

Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- $A = UBU^{-1}$, where B is a diagonal matrix;
- there exists a basis for \mathbb{R}^n formed by eigenvectors of A.

The matrix A is **diagonalizable** if it satisfies these conditions.

There are **two obstructions** to diagonalization of a matrix (i.e., existence of a basis of eigenvectors).

Example 1.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.

$$\det(A - \lambda I) = \lambda^2 + 1.$$

→ no real eigenvalues or eigenvectors
(However there are complex eigenvalues/eigenvectors.)

Example 2.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
.

 $\det(A - \lambda I) = (\lambda - 1)^2$. Hence $\lambda = 1$ is the only eigenvalue. The associated eigenspace is the line t(1,0).

Evolution of numbers

Natural numbers: $\mathbb{N} = \{1, 2, 3, \dots\}$.

$$x + 5 = 3$$
, $x = ?$

Integers:
$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}.$$

$$7x = 5, x = ?$$

Rational numbers:
$$\mathbb{Q} = \{ \frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0 \}.$$

 $x^2 = 2, x = ?$

$$x = t$$

Real numbers: \mathbb{R} .

$$x^2 + 1 = 0$$
, $x = ?$

Complex numbers

 \mathbb{C} : complex numbers.

Complex number:
$$\boxed{z=x+iy,}$$
 where $x,y\in\mathbb{R}$ and $i^2=-1.$

$$i = \sqrt{-1}$$
: imaginary unit

Alternative notation: z = x + yi.

$$x = \text{real part of } z$$
,
 $iy = \text{imaginary part of } z$

$$y = 0 \implies z = x$$
 (real number)
 $x = 0 \implies z = iy$ (purely imaginary number)

We add and multiply complex numbers as polynomials in i (but keep in mind that $i^2 = -1$). If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_3$ then

If
$$z_1 = x_1 + iy_1$$
 and $z_2 = x_2 + iy_2$ then
$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2),$$

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1).$$

Examples. •
$$(1+i) - (3+5i) = (1-3) + (i-5i)$$

= $-2-4i$;

- $(1+i)(3+5i) = 1 \cdot 3 + i \cdot 3 + 1 \cdot 5i + i \cdot 5i$ = $3+3i+5i+5i^2 = 3+3i+5i-5 = -2+8i$:
 - $2i(3-2i) = 6i 4i^2 = 4 + 6i$;
 - $(2+3i)(2-3i) = 4-9i^2 = 4+9=13;$
- $i^3 = -i$, $i^4 = 1$, $i^5 = i$.

Let $z = \cos \alpha + i \sin \alpha$, $w = \cos \beta + i \sin \beta$, where $\alpha, \beta \in \mathbb{R}$.

 $zw = \cos \alpha \cos \beta + i \cos \alpha \sin \beta + i \sin \alpha \cos \beta + i^2 \sin \alpha \sin \beta = (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\sin \alpha \cos \beta + \sin \beta \cos \alpha) = \cos(\alpha + \beta) + i \sin(\alpha + \beta).$

$$(\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta) =$$

$$= \cos(\alpha + \beta) + i \sin(\alpha + \beta).$$

As a consequence, $(\cos \alpha + i \sin \alpha)^n = \cos(n\alpha) + i \sin(n\alpha).$

Complex exponentials

Definition. For any $z \in \mathbb{C}$ let

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \dots + \frac{z^{n}}{n!} + \dots$$

Remark. A sequence of complex numbers $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$, . . . converges to z = x + iy if $x_n \to x$ and $y_n \to y$ as $n \to \infty$.

Theorem 1 If z = x + iy, $x, y \in \mathbb{R}$, then $e^z = e^x(\cos y + i\sin y)$.

In particular, $e^{i\phi} = \cos \phi + i \sin \phi$, $\phi \in \mathbb{R}$.

Theorem 2 $e^{z+w} = e^z \cdot e^w$ for all $z, w \in \mathbb{C}$.

Proposition $e^{i\phi} = \cos \phi + i \sin \phi$ for all $\phi \in \mathbb{R}$.

Proof:
$$e^{i\phi} = 1 + i\phi + \frac{(i\phi)^2}{2!} + \cdots + \frac{(i\phi)^n}{n!} + \cdots$$

The sequence $1, i, i^2, i^3, \dots, i^n, \dots$ is periodic: $\underbrace{1, i, -1, -i}_{j}, \underbrace{1, i, -1, -i}_{j}, \dots$

It follows that

$$e^{i\phi} = 1 - \frac{\phi^2}{2!} + \frac{\phi^4}{4!} - \dots + (-1)^k \frac{\phi^{2k}}{(2k)!} + \dots$$

$$+ i \left(\phi - \frac{\phi^3}{3!} + \frac{\phi^5}{5!} - \dots + (-1)^k \frac{\phi^{2k+1}}{(2k+1)!} + \dots \right)$$

$$= \cos \phi + i \sin \phi.$$

Geometric representation

Any complex number z = x + iy is represented by the vector/point $(x, y) \in \mathbb{R}^2$.

$$x = r \cos \phi, \quad y = r \sin \phi$$

 $\implies z = r(\cos \phi + i \sin \phi) = re^{i\phi}.$

$$z = r(\cos\phi + i\sin\phi) = re^{i\phi}$$

 $r \ge 0$ is the **modulus** of z (denoted |z|).

$$|x+iy|=\sqrt{x^2+y^2}.$$

 $\phi \in \mathbb{R}$ is the **argument** of z (determined up to adding a multiple of 2π).

$$z_1 = r_1 e^{i\phi_1}, \quad z_2 = r_2 e^{i\phi_2} \implies z_1 z_2 = r_1 r_2 e^{i(\phi_1 + \phi_2)}$$

Division

If $z = re^{i\phi}$, then $z^{-1} = r^{-1}e^{-i\phi}$ because $re^{i\phi} \cdot r^{-1}e^{-i\phi} = rr^{-1}e^{i(\phi-\phi)} = e^{i0} = 1$.

$$z_1 = r_1 e^{i\phi_1}, \quad z_2 = r_2 e^{i\phi_2} \implies \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\phi_1 - \phi_2)}$$

Given z = x + iy, the **complex conjugate** of z is $\overline{z} = x - iy$. The conjugacy $z \mapsto \overline{z}$ is the reflection of $\mathbb C$ in the real line.

$$z\overline{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 + y^2 = |z|^2.$$

$$z^{-1} = \frac{\overline{z}}{|z|^2}, \qquad (x + iy)^{-1} = \frac{x - iy}{x^2 + y^2}.$$

Examples. • $i^{-1} = \frac{i}{2} = -i$;

• $\frac{2+3i}{1+2i} = \frac{(2+3i)(1-2i)}{(1+2i)(1-2i)} = \frac{8-i}{5} = 1.6-0.2i.$

Roots of unity

Problem. Solve the equation $z^n - 1 = 0$ $(n \ge 1)$.

Let $z=re^{i\phi}$ $(r>0,\,\phi\in\mathbb{R})$. Then $z^n=r^ne^{in\phi}$.

Hence $z^n=1$ if $r^n=1$ and $n\phi=2\pi k$, $k\in\mathbb{Z}.$

That is, r = 1, $\phi = 2\pi k/n$, $k \in \mathbb{Z}$.

Solutions: $z_k = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}, \ 0 \le k \le n-1.$

Cubic roots of unity: $1, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{1}{2} - \frac{\sqrt{3}}{2}i.$

Roots of unity of degree 4: 1, i, -1, -i.

Fundamental Theorem of Algebra

Any polynomial of degree $n \ge 1$, with complex coefficients, has exactly n roots (counting with multiplicities).

Equivalently, if

$$p(z) = a_n z^n + a_{n-1} z + \cdots + a_1 z + a_0,$$

where $a_i \in \mathbb{C}$ and $a_n \neq 0$, then there exist complex numbers z_1, z_2, \ldots, z_n such that

$$p(z) = a_n(z - z_1)(z - z_2) \dots (z - z_n).$$

Complex eigenvalues/eigenvectors

Example.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.

$$\det(A - \lambda I) = \lambda^2 + 1 = (\lambda - i)(\lambda + i).$$

Characteristic values: $\lambda_1 = i$ and $\lambda_2 = -i$.

Associated eigenvectors: $\mathbf{v}_1 = (1, -i)$ and $\mathbf{v}_2 = (1, i)$.

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \begin{pmatrix} i \\ 1 \end{pmatrix} = i \begin{pmatrix} 1 \\ -i \end{pmatrix},$$

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ i \end{pmatrix} = \begin{pmatrix} -i \\ 1 \end{pmatrix} = -i \begin{pmatrix} 1 \\ i \end{pmatrix}.$$