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Lecture 3-2:

Complex eigenvalues and eigenvectors.
Norm.



Fundamental Theorem of Algebra
Any polynomial of degree n ≥ 1, with complex
coefficients, has exactly n roots (counting with

multiplicities).

Equivalently, if

p(z) = anz
n + an−1z + · · · + a1z + a0,

where ai ∈ C and an 6= 0, then there exist complex
numbers z1, z2, . . . , zn such that

p(z) = an(z − z1)(z − z2) . . . (z − zn).



Complex eigenvalues/eigenvectors

Example. A =

(

0 −1
1 0

)

.

det(A − λI ) = λ2 + 1 = (λ − i)(λ + i).
Characteristic values: λ1 = i and λ2 = −i .

Associated eigenvectors: v1 = (1,−i) and v2 = (1, i).
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.

v1, v2 is a basis of eigenvectors. In which space?



Complexification

Instead of the real vector space R
2, we consider a

complex vector space C2 (all complex numbers are

admissible as scalars).

The linear operator f : R2 → R2, f (x) = Ax is
replaced by the complexified linear operator

F : C2 → C2, F (x) = Ax.

The vectors v1 = (1,−i) and v2 = (1, i) form a

basis for C
2.
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Example. Aφ =

(

cos φ − sin φ

sinφ cos φ

)

.

Linear operator L : R
2 → R

2, L(x) = Aφx is the rotation
about the origin by the angle φ (counterclockwise).

Characteristic equation:
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cos φ − λ − sin φ

sin φ cos φ − λ

∣

∣

∣

∣

= 0.

(cos φ − λ)2 + sin2 φ = 0.

λ1 = cos φ + i sin φ = e iφ, λ2 = cos φ − i sin φ = e−iφ.

Consider vectors v1 = (1,−i), v2 = (1, i).
(

cos φ − sin φ

sin φ cos φ

) (

1
−i

)

=

(

cos φ + i sin φ

sin φ − i cos φ

)

= e iφ

(

1
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,

(

cos φ − sin φ
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) (

1
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)

=
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= e−iφ

(

1
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.

Thus Aφv1 = e iφv1, Aφv2 = e−iφv2.



Beyond linear structure

n-dimensional coordinate vector space Rn carries

additional structure: length and dot product.

Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ R
n.

Length: |x| =
√

x2

1
+ x2

2
+ · · · + x2

n .

Dot product: x · y = x1y1 + x2y2 + · · · + xnyn.

Length and dot product =⇒ angle between vectors

Angle: ∠(x, y) = arccos
x · y
|x| |y| .

Orthogonality: ∠(x, y) = 90o if x · y = 0.



Properties of the length function:

(i) |x| ≥ 0, |x| = 0 only for x = 0 (positivity)
(ii) |rx| = |r | |x| for all r ∈ R (homogeneity)

(iii) |x + y| ≤ |x| + |y| (triangle inequality)

Properties of the dot product:

(i) x · x ≥ 0, x · x = 0 only for x = 0 (positivity)

(ii) x · y = y · x (symmetry)
(iii) (rx) · y = r(x · y) (homogeneity)

(iv) (x + y) · z = x · z + y · z (distributive law)

(iii) and (iv) =⇒ x · y is a linear function of x
(ii) =⇒ x · y is a linear function of y as well

That is, the dot product is a bilinear function.

Relation between length and dot product: |x| =
√

x · x



Norm

The notion of norm generalizes the notion of length
of a vector in Rn.

Definition. Let V be a vector space. A function
α : V → R is called a norm on V if it has the
following properties:

(i) α(x) ≥ 0, α(x) = 0 only for x = 0 (positivity)
(ii) α(rx) = |r |α(x) for all r ∈ R (homogeneity)

(iii) α(x + y) ≤ α(x) + α(y) (triangle inequality)

Notation. The norm of a vector x ∈ V is usually
denoted ‖x‖. Different norms on V are

distinguished by subscripts, e.g., ‖x‖1 and ‖x‖2.



Examples. V = R
n, x = (x1, x2, . . . , xn) ∈ R

n.

• ‖x‖∞ = max(|x1|, |x2|, . . . , |xn|).
Positivity and homogeneity are obvious.

The triangle inequality:
|xi + yi | ≤ |xi | + |yi | ≤ maxj |xj | + maxj |yj |
=⇒ maxj |xj + yj | ≤ maxj |xj | + maxj |yj |

• ‖x‖1 = |x1| + |x2| + · · · + |xn|.
Positivity and homogeneity are obvious.
The triangle inequality: |xi + yi | ≤ |xi | + |yi |

=⇒
∑

j |xj + yj | ≤
∑

j |xj | +
∑

j |yj |



Examples. V = R
n, x = (x1, x2, . . . , xn) ∈ R

n.

• ‖x‖p =
(

|x1|p + |x2|p + · · · + |xn|p
)1/p

, p > 0.

Theorem ‖x‖p is a norm on R
n for any p ≥ 1.

Remark. ‖x‖2 = |x|.

Definition. A normed vector space is a vector

space endowed with a norm.

The norm defines a distance function on the normed
vector space: dist(x, y) = ‖x − y‖.
Then we say that a sequence x1, x2, . . . converges
to a vector x if dist(x, xn) → 0 as n → ∞.
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Examples. V = C [a, b], f : [a, b] → R.

• ‖f ‖∞ = max
a≤x≤b

|f (x)| (uniform norm).

• ‖f ‖1 =

∫ b

a

|f (x)| dx .

• ‖f ‖p =

(
∫ b

a

|f (x)|p dx

)1/p

, p > 0.

Theorem ‖f ‖p is a norm on C [a, b] for any p ≥ 1.


