Lecture 3-3:

MATH 311-504

Topics in Applied Mathematics

Norms and inner products.

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha:V\to\mathbb{R}$ is called a **norm** on V if it has the following properties:

(i) $\alpha(\mathbf{x}) \geq 0$, $\alpha(\mathbf{x}) = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\alpha(r\mathbf{x}) = |r| \alpha(\mathbf{x})$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $\alpha(\mathbf{x} + \mathbf{y}) \leq \alpha(\mathbf{x}) + \alpha(\mathbf{y})$ (triangle inequality)

Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$.

Examples.
$$V = \mathbb{R}^n$$
, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

• $\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$

 $\|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_n|$

• $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}, p \ge 1.$

• $\|\mathbf{x}\|_2 = (|x_1|^2 + |x_2|^2 + \dots + |x_n|^2)^{1/2} = |\mathbf{x}|.$

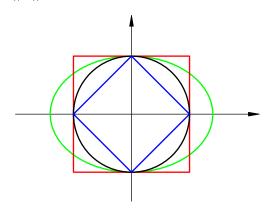
In particular,

Definition. A **normed vector space** is a vector space endowed with a norm.

The norm defines a distance function on the normed vector space: $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$.

Then we say that a sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to a vector \mathbf{x} if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_n) \to 0$ as $n \to \infty$.

Unit circle: $\|\mathbf{x}\| = 1$



$$\|\mathbf{x}\| = (x_1^2 + x_2^2)^{1/2}$$
 black $\|\mathbf{x}\| = (\frac{1}{2}x_1^2 + x_2^2)^{1/2}$ green $\|\mathbf{x}\| = |x_1| + |x_2|$ blue $\|\mathbf{x}\| = \max(|x_1|, |x_2|)$ red

Examples. $V = C[a, b], f : [a, b] \rightarrow \mathbb{R}.$

•
$$||f||_{\infty} = \max_{a \le x \le b} |f(x)|$$
 (uniform norm).

•
$$||f||_1 = \int_a^b |f(x)| dx$$
.

•
$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p > 0.$$

Theorem $||f||_p$ is a norm on C[a, b] for any $p \ge 1$.

Inner product

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if (i) $\langle \mathbf{x}, \mathbf{y} \rangle \geq 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry) (iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity) (iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law)

An **inner product space** is a vector space endowed with an inner product.

Examples. $V = \mathbb{R}^n$.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$$
.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \dots + d_n x_n y_n$$
, where $d_1, d_2, \dots, d_n > 0$.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = (D\mathbf{x}) \cdot (D\mathbf{y})$$
, where D is an invertible $n \times n$ matrix.

Remarks. (a) Invertibility of D is necessary to show that $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \implies \mathbf{x} = \mathbf{0}$.

(b) The second example is a particular case of the third one when $D = \operatorname{diag}(d_1^{1/2}, d_2^{1/2}, \dots, d_n^{1/2})$.

Examples. V = C[a, b].

• $\langle f,g\rangle = \int_a^b f(x)g(x) dx$.

$$J_a$$

• $\langle f,g\rangle = \int_{a}^{b} f(x)g(x)w(x) dx$, where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b].

w is called the **weight** function.

Counterexamples. $V = \mathbb{R}^2$.

$$\bullet \ \langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 - x_2 y_2.$$

Let $\mathbf{v} = (1, 2)$, then $\langle \mathbf{v}, \mathbf{v} \rangle = 1^2 - 2^2 = -3$. $\langle \mathbf{x}, \mathbf{y} \rangle$ is symmetric and bilinear, but not positive.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = 2x_1y_1 + x_1x_2 + 2x_2y_2 + y_1y_2.$$

 $\mathbf{v}=(1,1)$, $\mathbf{w}=(1,0) \implies \langle \mathbf{v},\mathbf{w}\rangle = 3$, $\langle 2\mathbf{v},\mathbf{w}\rangle = 8$. $\langle \mathbf{x},\mathbf{y}\rangle$ is positive and symmetric, but not bilinear.

•
$$\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_1 y_2 - x_2 y_1 + x_2 y_2.$$

 $\mathbf{v}=(1,1)$, $\mathbf{w}=(1,0) \implies \langle \mathbf{v},\mathbf{w}\rangle = 0$, $\langle \mathbf{w},\mathbf{v}\rangle = 2$. $\langle \mathbf{x},\mathbf{y}\rangle$ is positive and bilinear, but not symmetric.

Problem. Find an inner product on \mathbb{R}^2 such that $\langle \mathbf{e}_1, \mathbf{e}_1 \rangle = 2$, $\langle \mathbf{e}_2, \mathbf{e}_2 \rangle = 3$, and $\langle \mathbf{e}_1, \mathbf{e}_2 \rangle = -1$, where $\mathbf{e}_1 = (1,0)$, $\mathbf{e}_2 = (0,1)$.

Let
$$\mathbf{x} = (x_1, x_2)$$
, $\mathbf{y} = (y_1, y_2) \in \mathbb{R}^2$.
Then $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$, $\mathbf{y} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2$.
It follows that

It follows that
$$\langle \mathbf{x}, \mathbf{y} \rangle = \langle x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$$
$$= x_1 \langle \mathbf{e}_1, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle + x_2 \langle \mathbf{e}_2, y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 \rangle$$
$$= x_1 y_1 \langle \mathbf{e}_1, \mathbf{e}_1 \rangle + x_1 y_2 \langle \mathbf{e}_1, \mathbf{e}_2 \rangle + x_2 y_1 \langle \mathbf{e}_2, \mathbf{e}_1 \rangle + x_2 y_2 \langle \mathbf{e}_2, \mathbf{e}_2 \rangle$$
$$= 2x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2.$$

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then

$$\langle \mathbf{x}, \mathbf{y} \rangle^2 \le \langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$$
 for all $\mathbf{x}, \mathbf{y} \in V$.

Proof: For any $t \in \mathbb{R}$ let $\mathbf{v}_t = \mathbf{x} + t\mathbf{y}$. Then $\langle \mathbf{v}_t, \mathbf{v}_t \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + 2t \langle \mathbf{x}, \mathbf{y} \rangle + t^2 \langle \mathbf{y}, \mathbf{y} \rangle$.

The right-hand side is a quadratic polynomial in t (provided that $\mathbf{y} \neq \mathbf{0}$). Since $\langle \mathbf{v}_t, \mathbf{v}_t \rangle \geq 0$ for all t, the discriminant D is nonpositive. But $D = 4\langle \mathbf{x}, \mathbf{y} \rangle^2 - 4\langle \mathbf{x}, \mathbf{x} \rangle \langle \mathbf{y}, \mathbf{y} \rangle$.

Cauchy-Schwarz Inequality:

$$|\langle \mathbf{x}, \mathbf{y}
angle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x}
angle} \, \sqrt{\langle \mathbf{y}, \mathbf{y}
angle}.$$

Cauchy-Schwarz Inequality:

$$|\langle \mathbf{x}, \mathbf{y}
angle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x}
angle} \sqrt{\langle \mathbf{y}, \mathbf{y}
angle}.$$

Corollary 1 $|\mathbf{x} \cdot \mathbf{y}| \leq |\mathbf{x}| |\mathbf{y}|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Equivalently, for all $x_i, y_i \in \mathbb{R}$,

$$(x_1y_1+\cdots+x_ny_n)^2 \leq (x_1^2+\cdots+x_n^2)(y_1^2+\cdots+y_n^2).$$

Corollary 2 For any $f, g \in C[a, b]$,

$$\left(\int_a^b f(x)g(x)\,dx\right)^2 \leq \int_a^b |f(x)|^2\,dx\cdot\int_a^b |g(x)|^2\,dx.$$