MATH 311-504 Topics in Applied Mathematics

Lecture 3-4:

Norms induced by inner products. Orthogonality.

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha:V\to\mathbb{R}$, usually denoted $\alpha(\mathbf{x})=\|\mathbf{x}\|$, is called a **norm** on V if it has the following properties:

(i) $\|\mathbf{x}\| \ge 0$, $\|\mathbf{x}\| = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\|r\mathbf{x}\| = |r| \|\mathbf{x}\|$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)

The norm defines a distance function on the vector space: $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$.

Examples.
$$V = \mathbb{R}^n$$
, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

• $\|\mathbf{x}\|_2 = (|x_1|^2 + |x_2|^2 + \dots + |x_n|^2)^{1/2} = |\mathbf{x}|.$

•
$$\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$$

 $\|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_n|$

• $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \dots + |x_p|^p)^{1/p}, p \ge 1.$

Examples.
$$V = C[a, b], I : [a, b] \rightarrow \mathbb{R}.$$

• $||f||_p = \left(\int_{a}^{b} |f(x)|^p dx\right)^{1/p}, \ p \ge 1.$

•
$$||f||_{\infty} = \max_{a \le x \le b} |f(x)|$$
 (uniform norm).

$$\|f\|_{\infty} = \max_{a \le x \le b} |f(x)| \quad \text{(dimorni norm)}.$$

- $||f||_1 = \int_1^b |f(x)| dx$.

- Examples. $V = C[a, b], f : [a, b] \rightarrow \mathbb{R}.$

Inner product

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\beta: V \times V \to \mathbb{R}$, usually denoted $\beta(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle$, is called an **inner product** on V if it is positive, symmetric, and bilinear. That is, if

symmetric, and bilinear. That is, if

(i) $\langle \mathbf{x}, \mathbf{y} \rangle \geq 0$, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity)

(ii) $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetry)

(iii) $\langle r\mathbf{x}, \mathbf{y} \rangle = r \langle \mathbf{x}, \mathbf{y} \rangle$ (homogeneity)

(iv) $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ (distributive law)

Examples. $V = \mathbb{R}^n$.

/

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

$$\langle \mathbf{x}, \mathbf{y} \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \dots + d_n x_n y_n.$$

• $\langle \mathbf{x}, \mathbf{y} \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \dots + d_n x_n y_n$, where $d_1, d_2, \dots, d_n > 0$.

Examples. V = C[a, b].

•
$$\langle f,g\rangle = \int_a^b f(x)g(x) dx$$
.

• $\langle f, g \rangle = \int_a^b f(x)g(x)w(x) dx$, where w is bounded, piecewise continuous, and w > 0 everywhere on [a, b].

Cauchy-Schwarz Inequality:

$$|\langle \mathbf{x}, \mathbf{y}
angle| \leq \sqrt{\langle \mathbf{x}, \mathbf{x}
angle} \, \sqrt{\langle \mathbf{y}, \mathbf{y}
angle}.$$

Corollary 1 $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Equivalently, for all $x_i, y_i \in \mathbb{R}$,

$$(x_1y_1+\cdots+x_ny_n)^2 \leq (x_1^2+\cdots+x_n^2)(y_1^2+\cdots+y_n^2).$$

Corollary 2 For any $f, g \in C[a, b]$,

$$\left(\int_a^b f(x)g(x)\,dx\right)^2 \leq \int_a^b |f(x)|^2\,dx\cdot\int_a^b |g(x)|^2\,dx.$$

Norms induced by inner products

Theorem Suppose $\langle \mathbf{x}, \mathbf{y} \rangle$ is an inner product on a vector space V. Then $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ is a norm.

Proof: Positivity is obvious. Homogeneity:

$$||r\mathbf{x}|| = \sqrt{\langle r\mathbf{x}, r\mathbf{x} \rangle} = \sqrt{r^2 \langle \mathbf{x}, \mathbf{x} \rangle} = |r| \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

Triangle inequality (follows from Cauchy-Schwarz's):

$$\|\mathbf{x} + \mathbf{y}\|^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

$$= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$$

$$= \|\mathbf{x}\|^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2$$

$$\leq \|\mathbf{x}\|^2 + 2\|\mathbf{x}\| \|\mathbf{y}\| + \|\mathbf{y}\|^2 = (\|\mathbf{x}\| + \|\mathbf{y}\|)^2.$$

Examples. • The length of a vector in \mathbb{R}^n , $|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$,

is the norm induced by the dot product

$$\mathbf{x}\cdot\mathbf{y}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

• The norm $||f||_2 = \left(\int_a^b |f(x)|^2 dx\right)^{1/2}$ on the vector space C[a,b] is induced by the inner product

 $\langle f,g\rangle = \int^b f(x)g(x)\,dx.$

Parallelogram Identity:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2$$

$$\begin{aligned} &\textit{Proof:} \quad \|\mathbf{x}+\mathbf{y}\|^2 = \langle \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle. \\ &\text{Similarly,} \quad \|\mathbf{x}-\mathbf{y}\|^2 = \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle. \\ &\text{Then} \quad \|\mathbf{x}+\mathbf{y}\|^2 + \|\mathbf{x}-\mathbf{y}\|^2 = 2\langle \mathbf{x}, \mathbf{x} \rangle + 2\langle \mathbf{y}, \mathbf{y} \rangle = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2. \end{aligned}$$

Example. Norms on \mathbb{R}^n , n > 2:

- $\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|),$
- $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}, \quad p \ge 1.$

Theorem The norms $\|\mathbf{x}\|_{\infty}$ and $\|\mathbf{x}\|_{p}$, $p \neq 2$ do not satisfy the Parallelogram Identity. Hence they are not induced by any inner product on \mathbb{R}^{n} .

Hint: A counterexample to the Parallelogram Identity is provided by vectors $\mathbf{x} = (1, 0, 0, \dots, 0)$ and $\mathbf{y} = (0, 1, 0, \dots, 0)$.

Angle

Since $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| \, ||\mathbf{y}||$, we can define the *angle* between nonzero vectors in any vector space with an inner product (and induced norm):

$$\angle(\mathbf{x}, \mathbf{y}) = \arccos \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Then $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \angle (\mathbf{x}, \mathbf{y}).$

In particular, vectors \mathbf{x} and \mathbf{y} are **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Orthogonal systems

Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$.

Definition. A nonempty set $S \subset V$ is called an **orthogonal system** if all vectors in S are mutually orthogonal. That is, $\langle \mathbf{x}, \mathbf{y} \rangle = 0$ for any $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$.

An orthogonal system $S \subset V$ is called **orthonormal** if $\|\mathbf{x}\| = 1$ for any $\mathbf{x} \in S$.

Remark. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ form an orthonormal system if and only if

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Examples. • $V = \mathbb{R}^n$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$.

The standard basis $\mathbf{e}_1 = (1, 0, 0, \dots, 0)$, $\mathbf{e}_2 = (0, 1, 0, \dots, 0)$, ..., $\mathbf{e}_n = (0, 0, 0, \dots, 1)$.

• $V = \mathbb{R}^3$, $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$.

It is an orthonormal system.

$$\mathbf{v}_1 = (3, 5, 4), \ \mathbf{v}_2 = (3, -5, 4), \ \mathbf{v}_3 = (4, 0, -3).$$

 $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$, $\mathbf{v}_1 \cdot \mathbf{v}_3 = 0$, $\mathbf{v}_2 \cdot \mathbf{v}_3 = 0$.

 $\mathbf{v}_1 \cdot \mathbf{v}_1 = 50$, $\mathbf{v}_2 \cdot \mathbf{v}_2 = 50$, $\mathbf{v}_3 \cdot \mathbf{v}_3 = 25$. Thus the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is orthogonal but not extheoremal. An extheoremal set is formed by

Thus the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is orthogonal but not orthonormal. An orthonormal set is formed by normalized vectors $\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$, $\mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_2\|}$.

• $V = C[-\pi, \pi], \langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx.$

 $f_1(x) = \sin x$, $f_2(x) = \sin 2x$, ..., $f_n(x) = \sin nx$, ...

$$t_1(x) = \sin x$$
, $t_2(x) = \sin 2x$, ..., $t_n(x) = \sin nx$, ...

 $\langle f_m, f_n \rangle = \int_{-\infty}^{\infty} \sin(mx) \sin(nx) dx$

 $= \int_{-\pi}^{\pi} \frac{1}{2} (\cos(mx - nx) - \cos(mx + nx)) dx.$

 $\int_{-\infty}^{\infty} \cos(kx) \, dx = \frac{\sin(kx)}{k} \Big|_{x=-\pi}^{\pi} = 0 \quad \text{if} \quad k \in \mathbb{Z}, \ k \neq 0.$

 $k=0 \implies \int_{-\pi}^{\pi} \cos(kx) dx = \int_{-\pi}^{\pi} dx = 2\pi.$

$$\langle f_m, f_n \rangle = \frac{1}{2} \int_{-\pi}^{\pi} \left(\cos(m-n)x - \cos(m+n)x \right) dx$$

$$= \begin{cases} \pi & \text{if } m=n \\ 0 & \text{if } m \neq n \end{cases}$$

Thus the set $\{f_1, f_2, f_3, ...\}$ is orthogonal but not orthonormal.

It is orthonormal with respect to a scaled inner product

$$\langle\!\langle f,g \rangle\!\rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx.$$

${\bf Orthogonality} \implies {\bf linear \ independence}$

Theorem Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are nonzero vectors that form an orthogonal set. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Proof: Suppose $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$ for some $t_1, t_2, \dots, t_k \in \mathbb{R}$.

Then for any index $1 \le i \le k$ we have

$$\langle t_1\mathbf{v}_1+t_2\mathbf{v}_2+\cdots+t_k\mathbf{v}_k,\mathbf{v}_i\rangle=\langle \mathbf{0},\mathbf{v}_i\rangle=0.$$

$$\implies t_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + t_2 \langle \mathbf{v}_2, \mathbf{v}_i \rangle + \cdots + t_k \langle \mathbf{v}_k, \mathbf{v}_i \rangle = 0$$

By orthogonality, $t_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0 \implies t_i = 0$.

Orthonormal bases

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be an orthonormal basis for an inner product space V.

Theorem Let $\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n$ and $\mathbf{y} = y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2 + \dots + y_n \mathbf{v}_n$, where $x_i, y_j \in \mathbb{R}$. Then (i) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$, (ii) $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$.

Proof: (ii) follows from (i) when y = x.

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\langle \sum_{i=1}^{n} x_{i} \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j} \right\rangle = \sum_{i=1}^{n} x_{i} \left\langle \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j} \right\rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle = \sum_{i=1}^{n} x_{i} y_{i}.$$