Lecture 3-7:

MATH 311-504

Topics in Applied Mathematics

Orthogonal polynomials.

Problem. Approximate the function $f(x) = e^x$ on the interval [-1,1] by a quadratic polynomial.

The best approximation would be a polynomial p(x) that minimizes the distance relative to the uniform norm:

$$||f - p||_{\infty} = \max_{|x| < 1} |f(x) - p(x)|.$$

However there is no analytic way to find such a polynomial. Another approach is to find a "least squares" approximation that minimizes the integral norm

$$||f-p||_2 = \left(\int_1^1 |f(x)-p(x)|^2 dx\right)^{1/2}.$$

The norm $\|\cdot\|_2$ is induced by the inner product

$$\langle g, h \rangle = \int_{-1}^{1} g(x)h(x) dx.$$

Therefore $||f - p||_2$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_2 of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^2$ which form a basis for \mathcal{P}_2 . This would yield an orthogonal basis p_0, p_1, p_2 . Then

$$p(x) = \frac{\langle f, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x) + \frac{\langle f, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1(x) + \frac{\langle f, p_2 \rangle}{\langle p_2, p_2 \rangle} p_2(x).$$

Orthogonal polynomials

 \mathcal{P} : the vector space of all polynomials with real coefficients: $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$.

Basis for \mathcal{P} : $1, x, x^2, \dots, x^n, \dots$

Suppose that \mathcal{P} is endowed with an inner product.

Definition. Orthogonal polynomials (relative to the inner product) are polynomials $p_0, p_1, p_2, ...$ such that deg $p_n = n$ (p_0 is a nonzero constant) and $\langle p_n, p_m \rangle = 0$ for $n \neq m$.

Orthogonal polynomials can be obtained by applying the Gram-Schmidt orthogonalization process to the basis $1, x, x^2, \ldots$:

$$p_0(x) = 1,$$
 $\langle x, p_0 \rangle$

$$p_1(x) = x - \frac{\langle x, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x),$$

$$p_2(x) = x^2 - rac{\langle x^2, p_0
angle}{\langle p_0, p_0
angle} p_0(x) - rac{\langle x^2, p_1
angle}{\langle p_1, p_1
angle} p_1(x),$$

$$p_n(x) = x^n - \frac{\langle x^n, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x) - \cdots - \frac{\langle x^n, p_{n-1} \rangle}{\langle p_{n-1}, p_{n-1} \rangle} p_{n-1}(x),$$

Then p_0, p_1, p_2, \ldots are orthogonal polynomials.

Theorem (a) Orthogonal polynomials always exist.

(b) The orthogonal polynomial of a fixed degree is unique up to scaling.

(c) A polynomial $p \neq 0$ is an orthogonal polynomial if and only if $\langle p, q \rangle = 0$ for any polynomial q with deg $q < \deg p$.

(d) A polynomial $p \neq 0$ is an orthogonal polynomial if and only if $\langle p, x^k \rangle = 0$ for any $0 \leq k < \deg p$.

Example. $\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) dx$.

Note that $\langle x^n, x^m \rangle = 0$ if m + n is odd. Hence $p_{2k}(x)$ contains only even powers of x while

Hence
$$p_{2k}(x)$$
 contains only even powers of x while $p_{2k+1}(x)$ contains only odd powers of x .

 $p_0(x) = 1$ $p_1(x) = x$

 $p_2(x) = x^2 - \frac{\langle x^2, 1 \rangle}{\langle 1, 1 \rangle} = x^2 - \frac{1}{3},$ $p_3(x) = x^3 - \frac{\langle x^3, x \rangle}{\langle x, x \rangle} x = x^3 - \frac{3}{5} x.$

 p_0, p_1, p_2, \ldots are called the **Legendre polynomials**.

Instead of normalization, the orthogonal polynomials are subject to **standardization**.

The standardization for the Legendre polynomials is $P_n(1)=1$. In particular, $P_0(x)=1$, $P_1(x)=x$, $P_2(x)=\frac{1}{2}(3x^2-1)$, $P_3(x)=\frac{1}{2}(5x^3-3x)$.

Problem. Find $P_4(x)$.

Let $P_4(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$. We know that $P_4(1) = 1$ and $\langle P_4, x^k \rangle = 0$ for $0 \le k \le 3$.

$$P_4(1) = a_4 + a_3 + a_2 + a_1 + a_0,$$

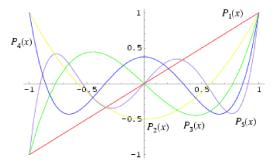
 $\langle P_4, 1 \rangle = \frac{2}{5}a_4 + \frac{2}{3}a_2 + 2a_0, \ \langle P_4, x \rangle = \frac{2}{5}a_3 + \frac{2}{3}a_1,$
 $\langle P_4, x^2 \rangle = \frac{2}{7}a_4 + \frac{2}{5}a_2 + \frac{2}{3}a_0, \ \langle P_4, x^3 \rangle = \frac{2}{7}a_3 + \frac{2}{5}a_1.$

$$\begin{cases} a_4 + a_3 + a_2 + a_1 + a_0 = 1 \\ \frac{2}{5}a_4 + \frac{2}{3}a_2 + 2a_0 = 0 \\ \frac{2}{5}a_3 + \frac{2}{3}a_1 = 0 \\ \frac{2}{7}a_4 + \frac{2}{5}a_2 + \frac{2}{3}a_0 = 0 \\ \frac{2}{7}a_3 + \frac{2}{5}a_1 = 0 \end{cases} \implies a_1 = a_3 = 0$$

$$\begin{cases} \frac{2}{5}a_3 + \frac{2}{3}a_1 = 0 \\ \frac{2}{7}a_3 + \frac{2}{5}a_1 = 0 \end{cases} \implies a_1 = a_3 = 0$$

$$\begin{cases} a_4 + a_2 + a_0 = 1 \\ \frac{2}{5}a_4 + \frac{2}{3}a_2 + 2a_0 = 0 \\ \frac{2}{7}a_4 + \frac{2}{5}a_2 + \frac{2}{3}a_0 = 0 \end{cases} \iff \begin{cases} a_4 = \frac{35}{8} \\ a_2 = -\frac{30}{8} \\ a_0 = \frac{3}{8} \end{cases}$$

Thus $P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$.



Legendre polynomials

Problem. Find a quadratic polynomial that is the best least squares fit to the function f(x) = |x| on the interval [-1,1].

The best least squares fit is a polynomial p(x) that minimizes the distance relative to the integral norm

$$||f - p|| = \left(\int_{-1}^{1} |f(x) - p(x)|^2 dx\right)^{1/2}$$

over all polynomials of degree 2.

The norm ||f - p|| is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_2 of polynomials of degree at most 2.

The Legendre polynomials P_0, P_1, P_2 form an orthogonal basis for \mathcal{P}_2 . Therefore

$$p(x) = \frac{\langle f, P_0 \rangle}{\langle P_0, P_0 \rangle} P_0(x) + \frac{\langle f, P_1 \rangle}{\langle P_1, P_1 \rangle} P_1(x) + \frac{\langle f, P_2 \rangle}{\langle P_2, P_2 \rangle} P_2(x).$$

$$\langle f, P_0 \rangle = \int_{-1}^1 |x| \, dx = 2 \int_0^1 x \, dx = 1,$$

$$\langle f, P_1 \rangle = \int_{-1}^{1} |x| \, x \, dx = 0,$$

$$\langle t, P_1 \rangle = \int_{-1}^{1} |x| x \, dx = 0$$

$$\langle f, P_2 \rangle = \int_{-1}^{1} |x| \frac{3x^2 - 1}{2} dx = \int_{0}^{1} x(3x^2 - 1) dx = \frac{1}{4},$$

In general,
$$\langle P_n, P_n \rangle = \frac{2}{2n+1}$$

$$\langle P_0, P_0 \rangle = \int_{-1}^1 dx = 2, \qquad \langle P_2, P_2 \rangle = \int_{-1}^1 \left(\frac{3x^2 - 1}{2} \right)^2 dx = \frac{2}{5}.$$

In general, $\langle P_n, P_n \rangle = \frac{2}{2n+1}$.

Problem. Find a quadratic polynomial that is the best least squares fit to the function f(x) = |x| on the interval [-1,1].

Solution:
$$p(x) = \frac{1}{2}P_0(x) + \frac{5}{8}P_2(x)$$

= $\frac{1}{2} + \frac{5}{16}(3x^2 - 1) = \frac{3}{16}(5x^2 + 1)$.

Recurrent formula for the Legendre polynomials: $(n+1)P_{n+1} = (2n+1)xP_n(x) - nP_{n-1}(x).$

For example, $4P_4(x) = 7xP_3(x) - 3P_2(x)$.

