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Lecture 3-8:
Orthogonal polynomials (continued).

Symmetric matrices.



Orthogonal polynomials

P : the vector space of all polynomials with real

coefficients: p(x) = a0 + a1x + a2x
2 + · · · + anx

n.

Suppose that P is endowed with an inner product.

Definition. Orthogonal polynomials (relative to

the inner product) are polynomials p0, p1, p2, . . .

such that deg pn = n (p0 is a nonzero constant)

and 〈pn, pm〉 = 0 for n 6= m.

Orthogonal polynomials can be obtained by applying
the Gram-Schmidt orthogonalization process

to the basis 1, x , x2, . . . .



Theorem (a) Orthogonal polynomials always exist.

(b) The orthogonal polynomial of a fixed degree is

unique up to scaling.

(c) A polynomial p 6= 0 is an orthogonal

polynomial if and only if 〈p, q〉 = 0 for any
polynomial q with deg q < deg p.

(d) A polynomial p 6= 0 is an orthogonal

polynomial if and only if 〈p, xk〉 = 0 for any
0 ≤ k < deg p.



Example. 〈p, q〉 =

∫

1

−1

p(x)q(x) dx .

Orthogonal polynomials relative to this inner

product are called the Legendre polynomials.

The standardization for the Legendre polynomials is

Pn(1) = 1. Recurrent formula:

(n + 1)Pn+1 = (2n + 1)xPn(x) − nPn−1(x).

P0(x) = 1, P1(x) = x ,

P2(x) = 1

2
(3xP1(x) − P0(x)) = 1

2
(3x2 − 1),

P3(x) = 1

3
(5xP2(x) − 2P1(x)) = 1

2
(5x3 − 3x),

P4(x) = 1

4
(7xP3(x)− 3P2(x)) = 1

8
(35x4− 30x2 +3).



Problem. Find a quadratic polynomial that is the
best least squares fit to the function f (x) = |x | on

the interval [−1, 1].

The best least squares fit is a polynomial p(x) that
minimizes the distance relative to the integral norm

‖f − p‖ =

(
∫

1

−1

|f (x) − p(x)|2 dx

)1/2

over all polynomials of degree 2.

The norm ‖f − p‖ is minimal if p is the orthogonal
projection of the function f on the subspace P2 of
polynomials of degree at most 2.



Problem. Find a quadratic polynomial that is the
best least squares fit to the function f (x) = |x | on

the interval [−1, 1].

Solution:

p(x) =
〈f , P0〉
〈P0, P0〉

P0(x) +
〈f , P1〉
〈P1, P1〉

P1(x) +
〈f , P2〉
〈P2, P2〉

P2(x)

=
1

2
P0(x) +

5

8
P2(x)

=
1

2
+

5

16
(3x2 − 1) =

3

16
(5x2 + 1).





Legendre polynomials



Definition. Chebyshev polynomials T0, T1, T2, . . .

are orthogonal polynomials relative to the inner

product

〈p, q〉 =

∫

1

−1

p(x)q(x)√
1 − x2

dx ,

with the standardization Tn(1) = 1.

Remark. “T” is like in “Tschebyscheff”.

Change of variable in the integral: x = cos φ.

〈p, q〉 = −
∫ π

0

p(cosφ) q(cosφ)
√

1 − cos2 φ
cos′ φ dφ

=

∫ π

0

p(cosφ) q(cosφ) dφ.



Theorem. Tn(cosφ) = cos nφ.

〈Tn, Tm〉 =

∫

π

0

Tn(cos φ)Tm(cos φ) dφ

=

∫

π

0

cos(nφ) cos(mφ) dφ = 0 if n 6= m.

Recurrent formula: Tn+1(x) = 2xTn(x) − Tn−1(x).

T0(x) = 1, T1(x) = x ,
T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x ,
T4(x) = 8x4 − 8x2 + 1, . . .

That is, cos 2φ = 2 cos2 φ − 1,

cos 3φ = 4 cos3 φ − 3 cosφ,
cos 4φ = 8 cos4 φ − 8 cos2 φ + 1, . . .



Chebyshev polynomials



Symmetric matrices

Proposition For any n×n matrix A and any

vectors x, y ∈ R
n, Ax · y = x · ATy.

Proof: Ax · y = yTAx = (yTAx)T = xTATy =

= ATy · x = x · ATy.

Definition. An n×n matrix A is called
• symmetric if AT = A;

• orthogonal if AAT = ATA = I , that is, if
AT = A−1;
• normal if AAT = ATA.

Clearly, symmetric and orthogonal matrices are
normal.



Theorem If x and y are eigenvectors of a
symmetric matrix A associated with different

eigenvalues, then x · y = 0.

Proof: Suppose Ax = λx and Ay = µy, where
λ 6= µ. Then Ax · y = λ(x · y), x · Ay = µ(x · y).

But Ax · y = x · ATy = x · Ay.
Thus λ(x · y) = µ(x · y) =⇒ x · y = 0.

Theorem Suppose A is a symmetric n×n matrix.

Then (a) all eigenvalues of A are real;
(b) there exists an orthonormal basis for R

n

consisting of eigenvectors of A.



Example. A =





1 0 1
0 3 0

1 0 1



.

• A is symmetric.

• A has three eigenvalues: 0, 2, and 3.

• Associated eigenvectors are v1 = (−1, 0, 1),

v2 = (1, 0, 1), and v3 = (0, 1, 0).

• Vectors v1, v2, v3 form an orthogonal basis for
R

3.


