
Math 311-504

Topics in Applied Mathematics

Lecture 6:
Row echelon form (continued).

Linear independence.



System of linear equations:














a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm

Coefficient matrix (m × n) and column vector of the
right-hand sides (m × 1):










a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn





















b1

b2

...
bm













System of linear equations:














a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·
am1x1 + am2x2 + · · · + amnxn = bm

Augmented m × (n + 1) matrix:










a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

...
... . . . ...

...
am1 am2 . . . amn bm













Solution of a system of linear equations splits into
two parts: (A) elimination and (B) back
substitution.

Both parts can be done by applying a finite number
of elementary operations.

Since the elementary operations preserve the
standard form of linear equations, we can trace the
solution process by looking on the augmented
matrix.

In terms of the augmented matrix, the elementary
operations are elementary row operations.



Elementary operations for systems of linear equations:

(1) to multiply an equation by a nonzero scalar;

(2) to add an equation multiplied by a scalar to
another equation;

(3) to interchange two equations.

Elementary row operations:

(1) to multiply a row by some r 6= 0;

(2) to add a row multiplied by some r ∈ R to
another row;

(3) to interchange two rows.

Remark. The rows are added and multiplied by
scalars as vectors (namely, row vectors).













a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

...
... . . . ...

...
am1 am2 . . . amn bm











=











v1

v2

...
vm











,

where vi = (ai1 ai2 . . . ain | bi) is a row vector.



Operation 1: to multiply the ith row by r 6= 0:














v1

...
vi
...

vm















→















v1

...
rvi
...

vm

















Operation 2: to add the ith row multiplied by r to
the jth row:























v1

...
vi
...
vj
...

vm























→























v1

...
vi
...

vj + rvi
...

vm

























Operation 3: to interchange the ith row with the
jth row:























v1

...
vi
...
vj
...

vm























→























v1

...
vj
...
vi
...

vm

























The goal of the Gaussian elimination is to convert
the augmented matrix into row echelon form:

• all the entries below the staircase line are zero;
• boxed entries, called pivot or leading entries,

are nonzero;
• each circled star corresponds to a free variable.



Strict triangular form is a particular case of row
echelon form that can occur for systems of n

equations in n variables:

Matrix of
coefficients



The original system of linear equations is consistent

if there is no leading entry in the rightmost column
of the augmented matrix in row echelon form.

Inconsistent system



The goal of the back substitution is to go from row
echelon form to reduced row echelon form (or
simply reduced form):

• all entries below the staircase line are zero;
• each leading entry is 1, the other entries in its

column are zero;
• each circled star corresponds to a free variable.



Example.






x − y = 2
2x − y − z = 3
x + y + z = 6





1 −1 0 2
2 −1 −1 3
1 1 1 6





Row echelon form (also strict triangular):






x − y = 2
y − z = −1

3z = 6





1 −1 0 2

0 1 −1 −1

0 0 3 6





Reduced row echelon form:






x = 3
y = 1

z = 2





1 0 0 3

0 1 0 1

0 0 1 2







Another example.






x + y − 2z = 1
y − z = 3

−x + 4y − 3z = 1





1 1 −2 1
0 1 −1 3

−1 4 −3 1





Row echelon form:






x + y − 2z = 1
y − z = 3

0 = −13





1 1 −2 1

0 1 −1 3

0 0 0 −13





Reduced row echelon form:






x − z = 0
y − z = 0

0 = 1





1 0 −1 0

0 1 −1 0

0 0 0 1







Yet another example.






x + y − 2z = 1
y − z = 3

−x + 4y − 3z = 14





1 1 −2 1
0 1 −1 3

−1 4 −3 14





Row echelon form:






x + y − 2z = 1
y − z = 3

0 = 0





1 1 −2 1

0 1 −1 3
0 0 0 0





Reduced row echelon form:






x − z = −2
y − z = 3

0 = 0





1 0 −1 −2

0 1 −1 3
0 0 0 0







New example.

{

x2 + 2x3 + 3x4 = 6
x1 + 2x2 + 3x3 + 4x4 = 10

Augmented matrix:

(

0 1 2 3 6
1 2 3 4 10

)

To obtain row echelon form, interchange the rows:
(

1 2 3 4 10

0 1 2 3 6

)

The system is consistent. There are two free

variables: x3 and x4.

To obtain reduced row echelon form, add −2 times
the 2nd row to the 1st row:



(

1 2 3 4 10

0 1 2 3 6

)

→

(

1 0 −1 −2 −2

0 1 2 3 6

)

{

x1 − x3 − 2x4 = −2
x2 + 2x3 + 3x4 = 6

⇐⇒

{

x1 = x3 + 2x4 − 2
x2 = −2x3 − 3x4 + 6

General solution:














x1 = t + 2s − 2
x2 = −2t − 3s + 6
x3 = t

x4 = s

(t, s ∈ R)

(x1, x2, x3, x4) = (t + 2s − 2,−2t − 3s + 6, t, s) =
= t(1,−2, 1, 0) + s(2,−3, 0, 1) + (−2, 6, 0, 0).

















a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·

am1x1 + am2x2 + · · · + amnxn = bm

The system is consistent if there is no leading entry
in the rightmost column of the reduced augmented
matrix. In this case, the general solution is

(x1, x2, . . . , xn) = t1v1 + t2v2 + · · · + tkvk + v0,

where vi are certain n-dimensional (row) vectors
and ti are arbitrary scalars.

k = n − (# of leading entries)



Definition. A subset S ⊂ R
n is called a hyperplane

(or an affine subspace) if it has a parametric
representation t1v1 + t2v2 + · · · + tkvk + v0,
where vi are fixed n-dimensional vectors and ti are
arbitrary scalars.

Hyperplanes are solution sets of systems of linear
equations.

The number k of parameters may depend on a
representation. The hyperplane S is called a
k-plane if k is as small as possible.



Example. Suppose v2 = rv1, where r ∈ R.
Then t1v1 + t2v2 + v0 = (t1 + rt2)v1 + v0.
Hence t1v1 + t2v2 + v0 and tv1 + v0 are different
representations of the same hyperplane.

0-plane is a point.

tv1 + v0 is a 1-plane if v1 6= 0.

t1v1 + t2v2 + v0 is a 2-plane if vectors v1 and v2 are
not parallel.

Thus 1-planes are lines, 2-planes are planes.



Definition. Given vectors v1, v2, . . . , vk ∈ R
n and

scalars t1, t2, . . . , tk , the vector

t1v1 + t2v2 + · · · + tkvk

is called a linear combination of vectors v1, . . . , vk .
The linear combination is called nontrivial if the
coefficients t1, . . . , tk are not all equal to zero.

Proposition The following conditions are equivalent:
(i) the zero vector is a nontrivial linear combination
of v1, . . . , vk ;
(ii) one of vectors v1, . . . , vk is a linear combination
of the other k − 1 vectors.



Proof: (i) =⇒ (ii) Suppose that
t1v1 + t2v2 + · · · + tkvk = 0,

where ti 6= 0 for some 1 ≤ i ≤ k . Then
vi = − t1

ti
v1 − · · · − ti−1

ti
vi−1 −

ti+1

ti
vi+1 − · · · − tk

ti
vk .

(ii) =⇒ (i) Suppose that
vi = r1v1 + · · · + ri−1vi−1 + ri+1vi+1 + · · · + rkvk

for some scalars rj . Then
r1v1 + · · · + ri−1vi−1 − vi + ri+1vi+1 + · · · + rkvk = 0.

Definition. Vectors v1, v2, . . . , vk ∈ R
n are called

linearly dependent if they satisfy condition (i) or
(ii) of the proposition. Otherwise the vectors are
called linearly independent.



Vectors v1, v2, . . . , vk ∈ R
n are linearly independent if

t1v1 + t2v2 + · · · + tkvk = 0 =⇒ t1 = · · · = tk = 0

Let vi = (a1i , a2i , . . . , ani) for i = 1, 2, . . . , k . Then
the vector identity t1v1 + t2v2 + · · · + tkvk = 0 is
equivalent to the system














a11t1 + a12t2 + · · · + a1ktk = 0
a21t1 + a22t2 + · · · + a2ktk = 0

· · · · · · · · ·
an1t1 + an2t2 + · · · + anktk = 0

Vectors v1, v2, . . . , vk are columns of the coefficient
matrix. The system is consistent. The zero
solution is unique if the number of nonzero rows in
the reduced matrix is exactly k .



Definition. A system of linear equations is called
homogeneous if all right-hand sides are zeros.

Proposition A homogeneous system can not have
a unique solution if the number of equations is less
than the number of variables.

Corollary Vectors v1, v2, . . . , vk ∈ R
n are linearly

dependent whenever k > n.

Theorem A hyperplane
t1v1 + t2v2 + · · · + tkvk + v0

is a k-plane if and only if vectors v1, v2, . . . , vk are
linearly independent.



Problem. Determine whether vectors
v1 = (1, 2, 1), v2 = (−1,−1, 1), and v3 = (0,−1, 1)
are linearly dependent.

We need to check if the vector equation t1v1 + t2v2 + t3v3 = 0
has solutions other than t1 = t2 = t3 = 0.

The vector equation is equivalent to a system of 3 linear
equations in variables t1, t2, t3. Vectors v1, v2, v3 are columns
of the coefficient matrix of the system.

Augmented matrix:





1 −1 0 0
2 −1 −1 0
1 1 1 0





Row echelon form:





1 −1 0 0
0 1 −1 0
0 0 3 0





There are no free variables =⇒ the zero solution is unique
=⇒ the vectors are linearly independent


