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Topics in Applied Mathematics

Lecture 8:
Matrix algebra (continued).



Matrices

Definition. An m-by-n matrix is a rectangular
array of numbers that has m rows and n columns:








a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn








Notation: A = (aij)1≤i≤n, 1≤j≤m or simply A = (aij)
if the dimensions are known.



Matrix addition

Definition. Let A = (aij) and B = (bij) be m×n

matrices. The sum A + B is defined to be the m×n

matrix C = (cij) such that cij = aij + bij for all
indices i , j .

That is, two matrices with the same dimensions can

be added by adding their corresponding entries.




a11 a12

a21 a22

a31 a32



 +





b11 b12

b21 b22

b31 b32



 =





a11 + b11 a12 + b12

a21 + b21 a22 + b22

a31 + b31 a32 + b32







Scalar multiplication

Definition. Given an m×n matrix A = (aij) and a
number r , the scalar multiple rA is defined to be

the m×n matrix D = (dij) such that dij = raij for
all indices i , j .

That is, to multiply a matrix by a scalar r ,

one multiplies each entry of the matrix by r .

r





a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





ra11 ra12 ra13

ra21 ra22 ra23

ra31 ra32 ra33







The m×n zero matrix (all entries are zeros) is
denoted Omn or simply O.

Negative of a matrix: −A is defined as (−1)A.

Matrix difference: A− B is defined as A + (−B).

As far as the linear operations (addition and scalar
multiplication) are concerned, the m×n matrices

can be regarded as mn-dimensional vectors.



Matrix multiplication

The product of matrices A and B is defined if the
number of columns in A matches the number of
rows in B .

Definition. Let A = (aik) be an m×n matrix and
B = (bkj) be an n×p matrix. The product AB is

defined to be the m×p matrix C = (cij) such that

cij =
∑n

k=1
aikbkj for all indices i , j .

That is, matrices are multiplied row by column:

(
∗ ∗ ∗
* * *

)




∗ ∗ * ∗
∗ ∗ * ∗
∗ ∗ * ∗



 =

(
∗ ∗ ∗ ∗
∗ ∗ * ∗

)



A =








a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...

am1 am2 . . . amn








=








v1

v2

...
vm








B =








b11 b12 . . . b1p

b21 b22 . . . b2p
...

... . . . ...

bn1 bn2 . . . bnp








= (w1,w2, . . . ,wp)

=⇒ AB =








v1·w1 v1·w2 . . . v1·wp

v2·w1 v2·w2 . . . v2·wp
...

... . . . ...
vm·w1 vm·w2 . . . vm·wp










Any system of linear equations can be represented

as a matrix equation:






a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · · · · · · ·

am1x1 + am2x2 + · · · + amnxn = bm

⇐⇒ Ax = b,

where

A =








a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn








, x =








x1

x2

...
xn








, b =








b1

b2

...
bm










Properties of matrix multiplication:

(AB)C = A(BC ) (associative law)

(A + B)C = AC + BC (distributive law #1)

C (A + B) = CA + CB (distributive law #2)

(rA)B = A(rB) = r(AB)

Any of the above identities holds provided that

matrix sums and products are well defined.



If A and B are n×n matrices, then both AB and BA

are well defined n×n matrices.

However, in general, AB 6= BA.

Example. Let A =

(
2 0
0 1

)

, B =

(
1 1
0 1

)

.

Then AB =

(
2 2

0 1

)

, BA =

(
2 1

0 1

)

.

If AB does equal BA, we say that the matrices A

and B commute.



Problem. Let A and B be arbitrary n×n matrices.

Is it true that (A − B)(A + B) = A2 − B2?

(A − B)(A + B) = (A − B)A + (A − B)B

= (AA − BA) + (AB − BB)

= A2 + AB − BA − B2

Hence (A − B)(A + B) = A2 − B2 if and only if
A commutes with B .



Diagonal matrices

If A = (aij) is a square matrix, then the entries aii

are called diagonal entries. A square matrix is
called diagonal if all non-diagonal entries are zeros.

Example.





7 0 0
0 1 0

0 0 2



, denoted diag(7, 1, 2).

Let A = diag(s1, s2, . . . , sn), B = diag(t1, t2, . . . , tn).

Then A + B = diag(s1 + t1, s2 + t2, . . . , sn + tn),

rA = diag(rs1, rs2, . . . , rsn).



Example.




7 0 0
0 1 0

0 0 2









−1 0 0
0 5 0

0 0 3



 =





−7 0 0
0 5 0

0 0 6





Theorem Let A = diag(s1, s2, . . . , sn),
B = diag(t1, t2, . . . , tn).

Then A + B = diag(s1 + t1, s2 + t2, . . . , sn + tn),

rA = diag(rs1, rs2, . . . , rsn).

AB = diag(s1t1, s2t2, . . . , sntn).

In particular, diagonal matrices always commute.



Example.




7 0 0

0 1 0
0 0 2









a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





7a11 7a12 7a13

a21 a22 a23

2a31 2a32 2a33





Theorem Let D = diag(d1, d2, . . . , dm) and A be
an m×n matrix. Then the matrix DA is obtained

from A by multiplying the ith row by di for
i = 1, 2, . . . , m:

A =








v1

v2

...

vm








=⇒ DA =








d1v1

d2v2

...

dmvm










Example.




a11 a12 a13

a21 a22 a23

a31 a32 a33









7 0 0
0 1 0

0 0 2



 =





7a11 a12 2a13

7a21 a22 2a23

7a31 a32 2a33





Theorem Let D = diag(d1, d2, . . . , dn) and A be
an m×n matrix. Then the matrix AD is obtained

from A by multiplying the ith column by di for
i = 1, 2, . . . , n:

A = (w1,w2, . . . ,wn)

=⇒ AD = (d1w1, d2w2, . . . , dnwn)



Identity matrix

Definition. The identity matrix (or unit matrix) is

a diagonal matrix with all diagonal entries equal to 1.
The n×n identity matrix is denoted In or simply I .

I1 = (1), I2 =

(
1 0
0 1

)

, I3 =





1 0 0

0 1 0
0 0 1



.

In general, I =






1 0 . . . 0
0 1 . . . 0...

... . . . ...
0 0 . . . 1




.

Theorem. Let A be an arbitrary m×n matrix.
Then ImA = AIn = A.



Matrix polynomials

If B is not a square matrix then BB is not defined.

Definition. Given an n-by-n matrix A, let

A2 = AA, A3 = AAA, . . . , Ak = AA . . .A︸ ︷︷ ︸

k times

, . . .

Also, let A1 = A and A0 = In.

Associativity of matrix multiplication implies that all powers
Ak are well defined and AjAk = Aj+k for all j , k ≥ 0. In
particular, all powers of A commute.

Definition. For any polynomial

p(x) = c0x
m + c1x

m−1 + · · · + cm−1x + cm,
let

p(A) = c0A
m + c1A

m−1 + · · · + cm−1A + cmIn.



Example. A =

(
2 1
1 1

)

.

A2 = AA =

(
2 1
1 1

) (
2 1
1 1

)

=

(
5 3
3 2

)

,

A3 = A2A =

(
5 3
3 2

) (
2 1
1 1

)

=

(
13 8
8 5

)

,

A4 = A2A2 =

(
5 3
3 2

) (
5 3
3 2

)

=

(
34 21
21 13

)

.

By the way, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . are
famous Fibonacci numbers given by f1 = f2 = 1

and fn = fn−1 + fn−2 for n ≥ 3.



Example. p(x) = x2 − 3x + 1, A =

(
2 1

1 1

)

.

p(A) = A2 − 3A + I =

(
2 1

1 1

)2

− 3

(
2 1

1 1

)

+

(
1 0

0 1

)

=

(
5 3

3 2

)

−

(
6 3

3 3

)

+

(
1 0

0 1

)

=

(
0 0

0 0

)

.

Thus A2 − 3A + I = O.



Properties of matrix polynomials

Suppose A is a square matrix, p(x), p1(x), p2(x) are

polynomials, and r is a scalar. Then

p(x) = p1(x)+p2(x) =⇒ p(A) = p1(A) + p2(A)

p(x) = rp1(x) =⇒ p(A) = rp1(A)

p(x) = p1(x)p2(x) =⇒ p(A) = p1(A)p2(A)

p(x) = p1(p2(x)) =⇒ p(A) = p1(p2(A))

In particular, matrix polynomials p1(A) and p2(A)

always commute.

If A = diag(s1, s2, . . . , sn) then

p(A) = diag
(
p(s1), p(s2), . . . , p(sn)

)
.



Examples.

• (A − I )(A + I ) = A2 − I

• (A + I )2 = A2 + 2A + I

• (A − I )2 = A2 − 2A + I

• (A + I )3 = A3 + 3A2 + 3A + I

• (A − I )3 = A3 − 3A2 + 3A − I

• (A − I )(A2 + A + I ) = A3 − I

• (A + I )(A2 − A + I ) = A3 + I



Inverse matrix

Let Mn(R) denote the set of all n×n matrices with
real entries. We can add, subtract, and multiply

elements of Mn(R). What about division?

Definition. Let A ∈ Mn(R). Suppose there exists
an n×n matrix B such that

AB = BA = In.

Then the matrix A is called invertible and B is
called the inverse of A (denoted A−1).

AA−1 = A−1A = I


