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Inverse matrix.



Identity matrix

Definition. The identity matrix (or unit matrix) is

a diagonal matrix with all diagonal entries equal to 1.
The n×n identity matrix is denoted In or simply I .

I1 = (1), I2 =

(

1 0
0 1

)

, I3 =





1 0 0

0 1 0
0 0 1



.

In general, I =







1 0 . . . 0
0 1 . . . 0...

... . . . ...
0 0 . . . 1






.

Theorem. Let A be an arbitrary m×n matrix.
Then ImA = AIn = A.



Inverse matrix

Notation. Mn(R) denote the set of all n×n

matrices with real entries.

Definition. Let A ∈ Mn(R). Suppose there exists

an n×n matrix B such that

AB = BA = In.

Then the matrix A is called invertible and B is

called the inverse of A (denoted A−1).

AA−1 = A−1A = I



Examples

A =

(

1 1

0 1

)

, B =

(

1 −1

0 1

)

, C =

(

−1 0

0 1

)

.

AB =

(

1 1
0 1

) (

1 −1
0 1

)

=

(

1 0
0 1

)

,

BA =

(

1 −1
0 1

) (

1 1
0 1

)

=

(

1 0
0 1

)

,

C 2 =

(

−1 0
0 1

) (

−1 0
0 1

)

=

(

1 0
0 1

)

.

Thus A−1 = B , B−1 = A, and C−1 = C .



Example. A =

(

2 1
1 1

)

.

In the previous lecture it was shown that A2 − 3A + I = O.

Assume that the matrix A is invertible. Then

A2 − 3A + I = O =⇒ A−1(A2 − 3A + I ) = A−1O

=⇒ A−1AA − 3A−1A + A−1I = O

=⇒ A − 3I + A−1 = O =⇒ A−1 = 3I − A

The above argument suggests (but does not prove) that the

matrix B = 3I − A =

(

1 −1
−1 2

)

is the inverse of A.

And, indeed, AB = BA = (3I − A)A = 3A − A2 = I .



Basic properties of inverse matrices:

• If B = A−1 then A = B−1. In other words, if A

is invertible, so is A−1, and A = (A−1)−1.

• The inverse matrix (if it exists) is unique.
Moreover, if AB = CA = I for some matrices

B , C ∈ Mn(R) then B = C = A−1.

Indeed, B = IB = (CA)B = C (AB) = CI = C .

• If matrices A, B ∈ Mn(R) are invertible, so is
AB , and (AB)−1 = B−1A−1.

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I ,
(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I .

• Similarly, (A1A2 . . .Ak)
−1 = A−1

k
. . .A−1

2
A−1

1
.



Other examples

D =

(

0 1
0 0

)

, E =

(

1 −1
−1 1

)

.

D2 =

(

0 1
0 0

) (

0 1
0 0

)

=

(

0 0
0 0

)

.

It follows that D is not invertible as otherwise

D2 = O =⇒ D−1D2 = D−1O =⇒ D = O.

E 2 =

(

1 −1
−1 1

) (

1 −1
−1 1

)

=

(

2 −2
−2 2

)

= 2E .

It follows that E is not invertible as otherwise

E 2 = 2E =⇒ E 2E−1 = 2EE−1 =⇒ E = 2I .



Theorem Suppose that D and E are n-by-n

matrices such that DE = O. Then exactly one of
the following is true:

(i) D is invertible, E = O;
(ii) D = O, E is invertible;

(iii) neither D nor E is invertible.

Proof: If D is invertible then

DE = O =⇒ D−1DE = D−1O =⇒ E = O.

If E is invertible then

DE = O =⇒ DEE−1 = OE−1 =⇒ D = O.

It remains to notice that the zero matrix is not
invertible.



Inverting diagonal matrices

Theorem A diagonal matrix D = diag(d1, . . . , dn)
is invertible if and only if all diagonal entries are
nonzero: di 6= 0 for 1 ≤ i ≤ n.

If D is invertible then D−1 = diag(d−1

1
, . . . , d−1

n
).











d1 0 . . . 0
0 d2 . . . 0
...

... . . . ...

0 0 . . . dn











−1

=











d−1

1
0 . . . 0

0 d−1

2
. . . 0

...
... . . . ...

0 0 . . . d−1

n













Inverting diagonal matrices

Theorem A diagonal matrix D = diag(d1, . . . , dn)
is invertible if and only if all diagonal entries are

nonzero: di 6= 0 for 1 ≤ i ≤ n.

If D is invertible then D−1 = diag(d−1

1
, . . . , d−1

n
).

Proof: If all di 6= 0 then, clearly,

diag(d1, . . . , dn) diag(d−1

1
, . . . , d−1

n
) = diag(1, . . . , 1) = I ,

diag(d−1

1
, . . . , d−1

n
) diag(d1, . . . , dn) = diag(1, . . . , 1) = I .

Now suppose that di = 0 for some i . Then for any

n×n matrix B the ith row of the matrix DB is a
zero row. Hence DB 6= I .



Inverting 2-by-2 matrices

Definition. The determinant of a 2×2 matrix

A =

(

a b

c d

)

is det A = ad − bc .

Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if det A 6= 0.

If det A 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.



Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if det A 6= 0. If det A 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.

Proof: Let B =

(

d −b

−c a

)

. Then

AB = BA =

(

ad−bc 0

0 ad−bc

)

= (ad − bc)I2.

In the case det A 6= 0, we have A−1 = (det A)−1B .
In the case det A = 0, the matrices A and B are
not invertible because A = O ⇐⇒ B = O.



Fundamental results on inverse matrices

Theorem 1 Given a square matrix A, the following are
equivalent:

(i) A is invertible;
(ii) x = 0 is the only solution of the matrix equation Ax = 0;
(iii) the row echelon form of A has no zero rows;
(iv) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row
operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity
matrix into the inverse matrix A−1.

Theorem 3 For any n×n matrices A and B ,

BA = I ⇐⇒ AB = I .



Row echelon form of a square matrix:

noninvertible case invertible case


