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Lecture 23:
Eigenvalues and eigenvectors
of a linear operator.

Basis of eigenvectors.



Eigenvalues and eigenvectors of a matrix

Definition. Let A be an nxn matrix. A number
A € R is called an eigenvalue of the matrix A if

Av = \v| for a nonzero column vector v € R".

The vector v is called an eigenvector of A
belonging to (or associated with) the eigenvalue \.

If A is an eigenvalue of A then the nullspace
N(A — Al), which is nontrivial, is called the
eigenspace of A corresponding to A\. The
eigenspace consists of all eigenvectors belonging
to the eigenvalue A\ plus the zero vector.



Characteristic equation

Definition. Given a square matrix A, the equation
det(A — A/) = 0 is called the characteristic
equation of A.

Eigenvalues \ of A are roots of the characteristic
equation.

If Ais an nxn matrix then p(\) = det(A— \/) is a
polynomial of degree n. It is called the
characteristic polynomial of A.

Theorem Any nxn matrix has at most n
eigenvalues.



Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector spaceand L: V — V
be a linear operator. A number \ is called an
eigenvalue of the operator L if |L(v) = Av| for a
nonzero vector v € V. The vector v is called an
eigenvector of L associated with the eigenvalue \.

(If V is a functional vector space then eigenvectors
are usually called eigenfunctions.)

If V =R" then the linear operator L is given by
L(x) = Ax, where A is an nxn matrix (and x is
regarded a column vector). In this case, eigenvalues
and eigenvectors of the operator L are precisely
eigenvalues and eigenvectors of the matrix A.



Eigenspaces

Let L:V — V be a linear operator.
For any A € R, let V) denotes the set of all
solutions of the equation L(x) = Ax.

Then V), is a subspace of V since V) is the kernel
of a linear operator given by x — L(x) — Ax.

V\ minus the zero vector is the set of all
eigenvectors of L associated with the eigenvalue .
In particular, A € R is an eigenvalue of L if and
only if V, # {0}.

If V) # {0} then it is called the eigenspace of L
corresponding to the eigenvalue .



Example. V = C>*(R), D:V — V, Df =f"

A function f € C®(R) is an eigenfunction of the
operator D belonging to an eigenvalue A if

f'(x) = Mf(x) forall x € R.

It follows that f(x) = ce™, where c is a nonzero
constant.

Thus each A € R is an eigenvalue of D.
The corresponding eigenspace is spanned by e*.



Example. V = C>®(R), L:V =V, Lf=f".

Lf = Af < f"(x) = M(x) =0 forall x€R.

It follows that each A € R is an eigenvalue of L and
the corresponding eigenspace V) is two-dimensional.
Note that L=D?, hence Df = uf = Lf = p?f.

If A >0 then V), = Span(e, e ), where
=

If A <0 then V) = Span(sin(ux), cos(ux)), where
TERVESY

If A =0 then V), = Span(1,x).



Suppose L:V — V is a linear operator on a
finite-dimensional vector space V.

Let ug,up,...,u, be abasisfor Vand g:V — R"” be the
corresponding coordinate mapping. Let A be the matrix of L
with respect to this basis. Then

L(v) =Av <= Ag(v) = Ag(v).

Hence the eigenvalues of L coincide with those of the matrix
A. Moreover, the associated eigenvectors of A are coordinates
of the eigenvectors of L.

Definition. The characteristic polynomial
p(A) = det(A — Al) of the matrix A is called the
characteristic polynomial of the operator L.

Then eigenvalues of L are roots of its characteristic
polynomial.



Theorem. The characteristic polynomial of the
operator L is well defined. That is, it does not
depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a
different basis vi,vs,...,v,. Then A= UBU!,
where U is the transition matrix from the basis
Vi,...,V, to uy,...,u,. We have to show that
det(A— \l) =det(B — Al) forall A € R. We
obtain
det(A — M) = det(UBU! — \I)

= det(UBU‘1 — U()\I)U_l) = det(U(B — )\I)U_l)

= det(U) det(B — A) det(U™1) = det(B — \).



Basis of eigenvectors

Let V be a finite-dimensional vector space and
L:V — V be a linear operator. Let vq,vy, ..., v,
be a basis for V and A be the matrix of the
operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if
vectors vi, Vo, ...,V, are eigenvectors of L.

If this is the case, then the diagonal entries of the
matrix A are the corresponding eigenvalues of L.

A1 0]

L(V,‘) = )\,’V,‘ — A= A2

0] An



How to find a basis of eigenvectors

Theorem If vy, v,, ..., v, are eigenvectors of a linear
operator L associated with distinct eigenvalues A1, Ao, ..., A,
then vy, vy, ... v, are linearly independent.

Corollary 1 Suppose Ai, Ao, ..., A are all eigenvalues of a

linear operator L:V — V. Forany 1</ <k, letS; bea
basis for the eigenspace associated to the eigenvalue ;. Then
these bases are disjoint and the union S =5 US U---U S,
is a linearly independent set.

Moreover, if the vector space V' admits a basis consisting of
eigenvectors of L, then S is such a basis.

Corollary 2 Let A be an nxn matrix such that the
characteristic equation det(A — A/) = 0 has n distinct roots.
Then (i) there is a basis for R" consisting of eigenvectors of A;
(i) all eigenspaces of A are one-dimensional.



Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional
vector space V. Then the following conditions are equivalent:

e the matrix of L with respect to some basis is diagonal;
e there exists a basis for V' formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Theorem 2 Let A be an nxn matrix. Then the following
conditions are equivalent:

e A is the matrix of a diagonalizable operator;

e A s similar to a diagonal matrix, i.e., it is represented as
A = UBU7!, where the matrix B is diagonal;

e there exists a basis for R” formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.



2 1
Example. A = <1 2).

e The matrix A has two eigenvalues: 1 and 3.
e The eigenspace of A associated with the
eigenvalue 1 is the line spanned by v; = (—1,1).
e The eigenspace of A associated with the
eigenvalue 3 is the line spanned by v, = (1,1).
e Eigenvectors v; and v, form a basis for R?.

Thus the matrix A is diagonalizable. Namely,
A = UBU™!, where

(9 (1)

Notice that U is the transition matrix from the basis vi, v, to
the standard basis.



11 -1
Example. A=11 1 1

00 2
e The matrix A has two eigenvalues: 0 and 2.
e The eigenspace for 0 is one-dimensional; it has a basis
Sy = {v1}, where v; =(—1,1,0).
e The eigenspace for 2 is two-dimensional; it has a basis
Sy = {va,v3}, where v, =(1,1,0), v3 = (—1,0,1).

e The union S; U S, = {vy1,vy,v3} is a linearly independent
set, hence it is a basis for R3.

Thus the matrix A is diagonalizable. Namely, A= UBU™!,
where

000 -1 1 -1
B=1020 U= 11 0
0 0 2 00 1



There are two obstructions to existence of a basis
consisting of eigenvectors. They are illustrated by
the following examples.

11
Example 1. A= <O 1).
det(A— M) = (A —1)%2. Hence A\ =1 is the only
eigenvalue. The associated eigenspace is the line
t(1,0).
0 -1
Example 2. A= <1 0).
det(A— M) = N2+ 1.
—> no real eigenvalues or eigenvectors

(However there are complex eigenvalues/eigenvectors.)



