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Lecture 37:
Surface integrals.
Gauss’ theorem.
Stokes’ theorem.



Scalar surface integral

Scalar surface integral is an integral of a scalar function f over
a parametrized surface X : D — R? relative to the area
element of the surface. It can be defined as a limit of
Riemann sums

S(f> R’Tj) = Zk

j=1

f(X(77)) area(X(D;)),

where R = {Dy,D,,..., Dy} is a partition of D into small
pieces and 7; € D; for 1 < j < k.

Theorem Let X : D — R3 be a smooth parametrized
surface, where D C R? is a bounded region. Then for any
continuous function f : X(D

[ ras= | rx Ha" aXHdsdt



Vector surface integral

Vector surface integral is an integral of a vector field over a
smooth parametrized surface. It is a scalar.

Definition. Let X : D — R3 be a smooth parametrized
surface, where D C R? is a bounded region. Then for any
continuous vector field F: X(D) — R3, the vector integral of
F along X is

// .dS = // N(s, t) ds dt,

where N = a_ X %, a normal vector to the surface.
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Equivalently, //F-ds:// % % % ds dt.
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Applications of surface integrals

e Mass of a shell
If f is the density of a shell P, then [[,f dS is the mass of P.

e Center of mass of a shell
If f is the density of a shell P, then
[[oxf(x,y,2)dS [[pyf(x,y,2)dS [[,zf(x,y,z)dS
[[,fds [[,fds I[» fdsS

are coordinates of the center of mass of P.

o Flux of fluid

If F is the velocity field of a fluid, then [[, F - dS is the flux
of the fluid across the surface P.



Surface integrals and reparametrization

Given two smooth parametrized surfaces

X:D; —R3and Y:D, = R3 wesaythat Yisa
smooth reparametrization of X if there exists an
invertible function H : D, — D; such that

Y = XoH and both H and H™! are smooth.

Theorem Any scalar surface integral is invariant
under smooth reparametrizations.

As a consequence, we can define the scalar integral
of a function over a non-parametrized smooth
surface.



Any vector surface integral can be represented as a scalar
surface integral:

//XF'dS://DF(X(SJ))'N(S,t)defZ//D(F-n)dS,

where n = ﬁ is a unit normal vector to the surface. Note
that n depends continuously on a point on the surface, hence
determining an orientation of X.

A smooth reparametrization may be orientation-preserving
(when n is preserved) or orientation-reversing (when n is
changed to —n).

Theorem Any vector surface integral is invariant under
smooth orientation-preserving reparametrizations and changes
its sign under orientation-reversing reparametrizations.

As a consequence, we can define the vector integral of a vector
field over a non-parametrized, oriented smooth surface.



Moebius strip: non-orientable surface

M. C. Escher, 1963



Problem. Let C denote the closed cylinder with
bottom given by z =0, top given by z =4, and
lateral surface given by x? + y2=19. We orient 9C
with outward normals. Find the integral of a vector
field F(x,y,z) = xe; + ye, + zes along 0C.

To evaluate the integral, we cut the boundary 9C into three
parts: the top, the bottom and the lateral surface.

The top of the cylinder is parametrized by Xio, : D — R3,
Xtop(XJ.y) = (X7y7 4)' where
D={(x,y) e R?: x>+ y? < 9}.
The bottom is parametrized by Xy : D — R3,
Xpot(X, y) = (x,y,0).

The lateral surface is parametrized by
Xlat : [07 27T] X [074] — R3, Xlat(¢7 Z) = (3 COS¢, 3sin ¢7 Z)'






We have 8)(% = (1,0,0), 22 — (0,1,0). Hence

1o) dy
8Xtop axtop B P
O X oy €e; X e = e3.

Since Xpot = Xop — (0,0,4), we also have Zbot = ey,

8Xbot — aXbot 8Xbot —
et = @y, and et X et = es.

Further, 2t — (—3sin ¢, 3cos¢,0) and 2 = (0,0, 1).
Therefore

e e e3
OXyar X OXyar =|—3sing 3cos¢ 0 |=(3cosp,3sing,0).

We observe that X;., and X, agree with the orientation of
the surface C while X, does not. It follows that

# F-dS:// F-dS—// F-dS+// F.dS.
aC Xtop Xpot Xiat



Integrating the vector field F = xe; + ye, + ze3 along each
part of the boundary of C, we obtain:

// F-dS = //(X,y,4)~(0,0,1)dxdy://4dxdy:367r,

Xtop D D

// F-dS = //(x,y,O)-(0,0,l)dxdy://dedy:O,
Xbot D D

|| Fras-
Xlat

// (3cos ¢, 3sin¢, z) - (3cosp,3sinp,0) dp dz
[0,27] x[0,4]

= // 9d¢dz = 727
[0,27] x[0,4]

Thus # F-dS =36mr—0-+ 727 = 108m.
aC



Gauss's Theorem (a.k.a. Divergence Theorem in R3)

Theorem Let D C R3 be a closed, bounded
region with piecewise smooth boundary 0D (not
necessarily connected) oriented by outward unit
normals to D. Then for any smooth vector field F

on D,
# F-dS:// V-FdV.
oD D

Corollary If a smooth vector field F: D — R3

has no divergence, V-F = 0, then # F-dS=0
C
for any closed, piecewise smooth surface C that

bounds a subregion of D.



Problem. Let C denote the closed cylinder with
bottom given by z =0, top given by z =4, and
lateral surface given by x? + y2=19. We orient 9C
with outward normals. Find the integral of a vector
field F(x,y,z) = xe; + ye, + zes along 0C.

Now let us use Gauss' Theorem:

%CF-dS:// V-FdV
///< X)+_(y)+_(z))dXdydz
B ///C 3 dx dy dz = 3volume(C) = 108



Stokes’s Theorem

Suppose S is an oriented surface in R3 bounded by an oriented
curve 9S. We say that 0S is oriented consistently with S
if, as one traverses S, the surface S is on the left when
looking down from the tip of n, the unit normal vector
indicating the orientation of S.

Theorem Let S C R® be a bounded, piecewise smooth
oriented surface with piecewise smooth boundary 9S oriented
consistently with S. Then for any smooth vector field F on S,

// curl(F)-dS = F-ds.
s as

Corollary |If the surface S is closed (i.e., has no boundary),
then for any smooth vector field F on S,

//Scurl(F)-dS —0.






Example

Suppose that a bounded, piecewise smooth surface S C R3 is
contained in the xy-coordinate plane, that is, S = Dx{0} for
a domain D C R?. We orient S by the upward unit normal
vector n = (0,0,1) and orient the boundary 9S = 0D x {0}
consistently with S. Further, suppose that F is a horizontal
vector field, F = (M, N,0). By Stokes' Theorem,

// curl(F)-dS = F-ds.
as

Recall that ffs curl(F)-dS = ffs curl(F)-n dS. We obtain

0 0 1
curl(F) -n= | 2 a% 2
M N 0

_on_om
Ox Oy

It follows that this particular case of Stokes' Theorem is
equivalent to Green's Theorem.



