
MATH 311

Topics in Applied Mathematics I

Lecture 40:
Review for the final exam (continued).



Topics for the final exam: Part I

Elementary linear algebra (L/C 1.1–1.5, 2.1–2.2)

• Systems of linear equations: elementary
operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix.
Elementary row operations, row echelon form and
reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and
3×3 matrices, row and column expansions,

elementary row and column operations.



Topics for the final exam: Part II

Abstract linear algebra (L/C 3.1–3.6, 4.1–4.3)

• Vector spaces (vectors, matrices, polynomials, functional
spaces).
• Subspaces. Nullspace, column space, and row space of a
matrix.
• Span, spanning set. Linear independence.
• Bases and dimension.
• Rank and nullity of a matrix.
• Coordinates relative to a basis.
• Change of basis, transition matrix.

• Linear transformations.
• Matrix transformations.
• Matrix of a linear mapping.
• Change of basis for a linear operator.
• Similarity of matrices.



Topics for the final exam: Part III

Advanced linear algebra (L/C 5.1–5.6, 6.1, 6.3)

• Eigenvalues, eigenvectors, eigenspaces
• Characteristic polynomial
• Bases of eigenvectors, diagonalization

• Euclidean structure in Rn (length, angle, dot product)
• Inner products and norms
• Orthogonal complement, orthogonal projection
• Least squares problems
• The Gram-Schmidt orthogonalization process



Topics for the final exam: Part IV

Vector analysis (L/C 8.1–8.4, 9.1–9.5, 10.1–10.3,
11.1–11.3)

• Gradient, divergence, and curl

• Fubini’s Theorem
• Change of coordinates in a multiple integral
• Geometric meaning of the determinant

• Length of a curve
• Line integrals
• Green’s Theorem
• Conservative vector fields

• Area of a surface
• Surface integrals
• Gauss’ Theorem
• Stokes’ Theorem



Problem. Consider a linear operator L : R3 → R3

defined by L(v) = v0 × v, where
v0 = (3/5, 0,−4/5).

(a) Find the matrix B of the operator L.

(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.

(d) Find the matrix of the operator L2020 (L applied
2020 times).



L(v) = v0 × v, v0 = (3/5, 0,−4/5).

Let v = (x , y , z) = xe1 + ye2 + ze3. Then

L(v) = v0 × v =
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Therefore B =





0 4/5 0

−4/5 0 −3/5
0 3/5 0



.

The range of the operator L is spanned by columns

of the matrix B . It follows that Range(L) is the
plane spanned by v1 = (0, 1, 0) and v2 = (4, 0, 3).

The kernel of L is the nullspace of the matrix B ,

i.e., the solution set for the equation Bx = 0.

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0 4/5 0
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0 3/5 0
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=⇒ x + 3

4
z = y = 0 =⇒ x = t(−3/4, 0, 1).



Alternatively, the kernel of L is the set of vectors

v ∈ R3 such that L(v) = v0 × v = 0.

It follows that this is the line spanned by

v0 = (3/5, 0,−4/5).

Characteristic polynomial of the matrix B :

det(B − λI ) =
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= −λ3−(3/5)2λ−(4/5)2λ = −λ3−λ = −λ(λ2+1).

The eigenvalues are 0, i , and −i .



The matrix of the operator L2020 is B2020.

Since the matrix B has eigenvalues 0, i , and −i , it is

diagonalizable in C
3. Namely, B = UDU−1, where

U is an invertible matrix with complex entries and

D =





0 0 0
0 i 0

0 0 −i



.

Then B2020 = UD2020U−1. We have that D2020 =
= diag

(

0, i 2020, (−i)2020
)

= diag(0, 1, 1) = −D2.
Hence

B2020 = U(−D2)U−1 = −B2 =





0.64 0 0.48

0 1 0
0.48 0 0.36



.



Problem. Find the distance from the point
y = (0, 0, 0, 1) to the subspace V ⊂ R4 spanned

by vectors x1 = (1,−1, 1,−1), x2 = (1, 1, 3,−1),
and x3 = (−3, 7, 1, 3).

First we apply the Gram-Schmidt process to vectors x1, x2, x3
and obtain an orthogonal basis v1, v2, v3 for the subspace V .
Next we compute the orthogonal projection p of the vector y
onto V :

p =
〈y, v1〉
〈v1, v1〉

v1 +
〈y, v2〉
〈v2, v2〉

v2 +
〈y, v3〉
〈v3, v3〉

v3.

Then the distance from y to V equals ‖y − p‖.

Alternatively, we can apply the Gram-Schmidt process to
vectors x1, x2, x3, y. We should obtain an orthogonal system
v1, v2, v3, v4. Then the desired distance will be ‖v4‖.



x1 = (1,−1, 1,−1), x2 = (1, 1, 3,−1),
x3 = (−3, 7, 1, 3), y = (0, 0, 0, 1).

v1 = x1 = (1,−1, 1,−1),

v2 = x2−
〈x2, v1〉
〈v1, v1〉

v1 = (1, 1, 3,−1)− 4

4
(1,−1, 1,−1)

= (0, 2, 2, 0),

v3 = x3 −
〈x3, v1〉
〈v1, v1〉

v1 −
〈x3, v2〉
〈v2, v2〉

v2

= (−3, 7, 1, 3)− −12

4
(1,−1, 1,−1)− 16

8
(0, 2, 2, 0)

= (0, 0, 0, 0).



The Gram-Schmidt process can be used to check
linear independence of vectors! It failed because

the vector x3 is a linear combination of x1 and x2.
V is a plane, not a 3-dimensional subspace. To fix

things, it is enough to drop x3, i.e., we should
orthogonalize vectors x1, x2, y.

ṽ3 = y − 〈y, v1〉
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v1 −
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= (0, 0, 0, 1)− −1

4
(1,−1, 1,−1)− 0

8
(0, 2, 2, 0)

= (1/4,−1/4, 1/4, 3/4).
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Problem. The base of a pyramid is a quadrilateral with
vertices at points (0, 0, 0), (−1, 1, 2), (1, 1, 0) and (1, 3, 2).
The apex is at the point (1, 0, 3). Find the volume of the
pyramid.

Let P denote the pyramid. Let O = (0, 0, 0), A1 =(−1, 1, 2),
A2 = (1, 1, 0), A3 = (1, 3, 2) and B = (1, 0, 3).

First we construct a linear transformation T : R3 → R3 such
that T (1, 0, 0) = A1, T (0, 1, 0) = A2 and T (0, 0, 1) = B .
This transformation is unique and given by

T
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The matrix is M = (A1,A2,B).

detM =
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By construction, T−1(P) is a pyramid with the apex at
(0, 0, 1) and three vertices of the base at (0, 0, 0), (1, 0, 0) and
(0, 1, 0). It follows that the base of T−1(P) is contained in
the xy -plane and that the edge (0, 0, 0)−(0, 0, 1) is the
altitude.

To find the remaining vertex T−1(A3), we need to solve a
system of linear equations:







−x + y + z = 1,
x + y = 3,
2x + 3z = 2

⇐⇒







x = 1,
y = 2,
z = 0.

Hence the base of the pyramid is a trapezoid with bases of
length 1 and 2, and height 1. Its area equals 3

2
. Therefore

the volume of the pyramid T−1(P) equals 1

3
· 3

2
· 1 = 1

2
.

We have volume(T (D)) = |detM | volume(D) for any
domain D ⊂ R3. In particular, volume(P) = |−8| · 1

2
= 4.


