
MATH 323

Linear Algebra

Lecture 26:
Review for the final exam.



Topics for the final exam: Part I

Elementary linear algebra (L/dP 1.1–1.5, 2.1–2.2)

• Systems of linear equations: elementary

operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix.
Elementary row operations, row echelon form and

reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and

3×3 matrices, row and column expansions,
elementary row and column operations.



Topics for the final exam: Part II

Abstract linear algebra (L/dP 3.1–3.6, 4.1–4.3)

• Vector spaces (vectors, matrices, polynomials, functional
spaces).
• Subspaces. Nullspace, column space, and row space of a
matrix.
• Span, spanning set. Linear independence.
• Bases and dimension.
• Rank and nullity of a matrix.
• Coordinates relative to a basis.
• Change of basis, transition matrix.

• Linear transformations.
• Matrix of a linear transformation.
• Change of basis for a linear operator.
• Similarity of matrices.



Topics for the final exam: Parts III–IV

Advanced linear algebra (L/dP 5.1–5.6, 6.1, 6.3–6.4)

• Euclidean structure in R
n (length, angle, dot product).

• Inner products and norms.
• Orthogonal complement, orthogonal projection.
• Least squares problems.
• The Gram-Schmidt orthogonalization process.

• Eigenvalues, eigenvectors, eigenspaces.
• Characteristic polynomial.
• Bases of eigenvectors, diagonalization.
• Complex eigenvalues and eigenvectors.
• Orthogonal matrices.
• Rigid motions, rotations in space.



Problem. Consider a system of linear equations in
variables x , y , z :















x + 2y − z = 1,

2x + 3y + z = 3,
x + 3y + az = 0,

x + y + 2z = b.

Find values of the parameters a and b for which the

system has infinitely many solutions, and solve the
system for these values.



To determine the number of solutions for the system, we
convert its augmented matrix to row echelon form using
elementary row operations:








1 2 −1 1
2 3 1 3
1 3 a 0
1 1 2 b









→









1 2 −1 1
0 −1 3 1
1 3 a 0
1 1 2 b









→









1 2 −1 1
0 −1 3 1
0 1 a + 1 −1
1 1 2 b









→









1 2 −1 1
0 −1 3 1
0 1 a + 1 −1
0 −1 3 b − 1









→









1 2 −1 1
0 1 −3 −1
0 1 a + 1 −1
0 −1 3 b − 1









→









1 2 −1 1
0 1 −3 −1
0 0 a + 4 0
0 −1 3 b − 1











→









1 2 −1 1
0 1 −3 −1
0 0 a + 4 0
0 0 0 b − 2









.

Now the augmented matrix is in row echelon form (except for
the case a = −4, b 6= 2 when one also needs to exchange the
last two rows).

If b 6= 2, then there is a leading entry in the rightmost
column, which indicates inconsistency.

In the case b = 2, the system is consistent. If, additionally,
a 6= −4 then there is a leading entry in each of the first three
columns, which implies uniqueness of the solution.

Thus the system has infinitely many solutions only if a = −4
and b = 2.



Thus the system has infinitely many solutions only if a = −4
and b = 2. To find the solutions, we proceed to reduced row
echelon form (for these particular values of parameters):









1 2 −1 1
0 1 −3 −1
0 0 0 0
0 0 0 0









→









1 0 5 3
0 1 −3 −1
0 0 0 0
0 0 0 0









.

The latter matrix is the augmented matrix of the following
system of linear equations (which is equivalent to the given
one):

{

x + 5z = 3,
y − 3z = −1

⇐⇒
{

x = −5z + 3,
y = 3z − 1.

The general solution is (x , y , z) = (−5t + 3, 3t − 1, t)
= (3,−1, 0) + t(−5, 3, 1), t ∈ R.



Problem. Consider a linear operator L : R3 → R
3 given by

L(v) = (v · v1)v2, where v1 = (1, 1, 1), v2 = (1, 2, 2).

Find the matrix of L.

Let A denote the matrix of the linear operator L. The
consecutive columns of A are vectors L(e1), L(e2), L(e3),
where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) is the
standard basis for R3.

Given v = (x , y , z) ∈ R3, we have that v · v1 = x + y + z
and L(v) =

(

x + y + z , 2(x + y + z), 2(x + y + z)
)

. It
follows that L(e1) = L(e2) = L(e3) = (1, 2, 2). Consequently,

A =





1 1 1
2 2 2
2 2 2



.



Problem. Consider a linear operator L : R3 → R3 given by
L(v) = (v · v1)v2, where v1 = (1, 1, 1), v2 = (1, 2, 2).

Find the matrix of L.

Alternative solution: Given a vector v = (x , y , z) ∈ R3, let
α = v · v1 and (x1, y1, z1) = L(v). In terms of matrix algebra,
we have





x1
y1
z1



 = α





1
2
2



 =





1
2
2



(α) =





1
2
2





(

1 1 1
)





x
y
z





(note that scalar multiplication of a column vector is
equivalent to multiplication by a 1×1 matrix but the matrix
has to be on the right as otherwise the matrix product is not
defined). It follows that the matrix of the operator L is





1
2
2





(

1 1 1
)

=





1 1 1
2 2 2
2 2 2



.



Problem. Consider a linear operator L : R3 → R3

defined by L(v) = v0 × v, where
v0 = (3/5, 0,−4/5).

(a) Find the matrix A of the operator L.

(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.

(d) Find the matrix of the operator L2023 (L applied
2023 times).



L(v) = v0 × v, v0 = (3/5, 0,−4/5).

Let v = (x , y , z) = xe1 + ye2 + ze3. Then

L(v) = v0 × v =

∣

∣

∣

∣

∣

∣

e1 e2 e3
3/5 0 −4/5

x y z

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

0 −4/5

y z

∣

∣

∣

∣

e1 −
∣

∣

∣

∣

3/5 −4/5

x z

∣

∣

∣

∣

e2 +

∣

∣

∣

∣

3/5 0

x y

∣

∣

∣

∣

e3

= 4

5
ye1 −

(

4

5
x + 3

5
z
)

e2 +
3

5
ye3 =

(

4

5
y ,−4

5
x − 3

5
z , 3

5
y
)

.

In particular, L(e1) =
(

0,−4

5
, 0
)

, L(e2) =
(

4

5
, 0, 3

5

)

,

L(e3) =
(

0,−3

5
, 0
)

.



Therefore A =





0 4/5 0

−4/5 0 −3/5
0 3/5 0



.

The range of the operator L is spanned by columns

of the matrix A. It follows that Range(L) is the
plane spanned by v1 = (0, 1, 0) and v2 = (4, 0, 3).

The kernel of L is the nullspace of the matrix A,

i.e., the solution set for the equation Ax = 0.




0 4/5 0
−4/5 0 −3/5

0 3/5 0



 →





1 0 3/4
0 1 0

0 0 0





=⇒ x + 3

4
z = y = 0 =⇒ x = t(−3/4, 0, 1).



Alternatively, the kernel of L is the set of vectors

v ∈ R3 such that L(v) = v0 × v = 0.

It follows that this is the line spanned by

v0 = (3/5, 0,−4/5).

Characteristic polynomial of the matrix A:

det(A− λI ) =

∣

∣

∣

∣

∣

∣

−λ 4/5 0
−4/5 −λ −3/5
0 3/5 −λ

∣

∣

∣

∣

∣

∣

= −λ3−(3/5)2λ−(4/5)2λ = −λ3−λ = −λ(λ2+1).

The eigenvalues are 0, i , and −i .



The matrix of the operator L2023 is A2023.

Since the matrix A has eigenvalues 0, i , and −i , it is

diagonalizable in C
3. Namely, A = UDU−1, where

U is an invertible matrix with complex entries and

D =





0 0 0
0 i 0

0 0 −i



.

Then A2023 = UD2023U−1. We have that D2023 =
= diag

(

0, i 2023, (−i)2023
)

= diag(0,−i , i) = −D.
Hence

A2023 = U(−D)U−1 = −A =





0 −4/5 0

4/5 0 3/5
0 −3/5 0



.



Problem. Find the distance from the point z = (0, 0, 1, 0)
to the plane Π that goes through the point x0 = (2, 0,−1, 0)
and is parallel to the vectors v1 = (1,−1, 1,−1) and
v2 = (0, 1, 1, 0).

The plane Π is not a subspace of R4 as it does not pass
through the origin. Let Π0 = Span(v1, v2). Then
Π = Π0 + x0. Observe that the distance from the point z to
the plane Π is the same as the distance from the point z− x0
to the plane Π− x0 = Π0.

The distance from z− x0 = (−2, 0, 2, 0) to the plane Π0 is
the distance from z− x0 to its orthogonal projection p on Π0.
Note that {v1, v2} is an orthogonal basis for Π0. Hence

p =
〈z− x0, v1〉
〈v1, v1〉

v1 +
〈z− x0, v2〉
〈v2, v2〉

v2.

We obtain that p = 0

4
(1,−1, 1,−1) + 2

2
(0, 1, 1, 0) = (0, 1, 1, 0).

Thus the distance equals ‖(z−x0)− p‖ = ‖(−2,−1, 1, 0)‖ =
√
6.



Bases of eigenvectors

Let A be an n×n matrix with real entries.

• A has n distinct real eigenvalues =⇒ a basis for Rn

formed by eigenvectors of A

• A has complex eigenvalues =⇒ no basis for Rn formed by
eigenvectors of A

• A has n distinct complex eigenvalues =⇒ a basis for Cn

formed by eigenvectors of A

• A has less than n eigenvalues =⇒ further information is
needed

• an orthonormal basis for Rn formed by eigenvectors of A
⇐⇒ A is symmetric: AT = A



Problem. For each of the following 2×2 matrices

determine whether it allows

(a) a basis of eigenvectors for R2,

(b) a basis of eigenvectors for C2,
(c) an orthonormal basis of eigenvectors for R2.

A =

(

1 0

0 4

)

(a),(b),(c): yes

B =

(

0 1

0 0

)

(a),(b),(c): no



Problem. For each of the following 2×2 matrices

determine whether it allows

(a) a basis of eigenvectors for R2,

(b) a basis of eigenvectors for C2,
(c) an orthonormal basis of eigenvectors for R2.

C =

(

2 3

1 4

)

(a),(b): yes (c): no

D =

(

0 −1

1 0

)

(b): yes (a),(c): no



Problem. Let V be the vector space spanned by

functions f1(x) = x sin x , f2(x) = x cos x ,
f3(x) = sin x , and f4(x) = cos x .

Consider the linear operator D : V → V ,
D = d/dx .

(a) Find the matrix A of the operator D relative to

the basis f1, f2, f3, f4.
(b) Find the eigenvalues of A.

(c) Is the matrix A diagonalizable in R
4 (in C

4)?



A is a 4×4 matrix whose columns are coordinates of
functions Dfi = f ′

i
relative to the basis f1, f2, f3, f4.

f ′
1
(x) = (x sin x)′ = x cos x + sin x = f2(x) + f3(x),

f ′
2
(x) = (x cos x)′ = −x sin x + cos x

= −f1(x) + f4(x),

f ′
3
(x) = (sin x)′ = cos x = f4(x),

f ′
4
(x) = (cos x)′ = − sin x = −f3(x).

Thus A =









0 −1 0 0
1 0 0 0
1 0 0 −1

0 1 1 0









.



Eigenvalues of A are roots of its characteristic

polynomial

det(A− λI ) =

∣

∣

∣

∣

∣

∣

∣

∣

−λ −1 0 0
1 −λ 0 0

1 0 −λ −1
0 1 1 −λ

∣

∣

∣

∣

∣

∣

∣

∣

Expand the determinant by the 1st row:

det(A− λI ) = −λ

∣

∣

∣

∣

∣

∣

−λ 0 0

0 −λ −1
1 1 −λ

∣

∣

∣

∣

∣

∣

− (−1)

∣

∣

∣

∣

∣

∣

1 0 0

1 −λ −1
0 1 −λ

∣

∣

∣

∣

∣

∣

= λ2(λ2+1)+(λ2+1) = (λ2+1)2 = (λ−i)2(λ+i)2.

The roots are i and −i , both of multiplicity 2.



One can show that both eigenspaces of A are one-dimensional.
The eigenspace for i is spanned by (0, 0, i , 1) and the
eigenspace for −i is spanned by (0, 0,−i , 1). It follows that
the matrix A is not diagonalizable in C

4.

There is also an indirect way to show that A is not
diagonalizable in C4. Assume the contrary. Then
A = UPU−1, where U is an invertible matrix with complex
entries and

P =









i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i









(note that P should have the same characteristic polynomial
as A). This would imply that A2 = UP2U−1. But P2 = −I
so that A2 = U(−I )U−1 = −I .

Let us check if A2 = −I .



A2 =









0 −1 0 0

1 0 0 0
1 0 0 −1

0 1 1 0









2

=









−1 0 0 0

0 −1 0 0
0 −2 −1 0

2 0 0 −1









.

Since A2 6= −I , we have a contradiction. Thus the

matrix A is not diagonalizable in C
4.


