MATH 409-501/503 Fall 2013

Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Suppose Ei, Es, E3, ... are countable sets. Prove that their union
FEiUFE;U E3U. .. is also a countable set.

First we are going to show that the set N x N is countable. Consider a relation < on the set N x N
such that (ni,n2) < (mq,mg) if and only if either ny 4+ no < my + mg or else ny + ny = my + mo and
ny < my. It is easy to see that < is a strict linear order. Moreover, for any pair (m,mg) € NxN there
are only finitely many pairs (n1,na) such that (ny,na) < (mq, me). It follows that < is a well-ordering.
Now we define inductively a mapping F' : N — N x N such that for any n € N the pair F'(n) is the least
(relative to <) pair different from F'(k) for all natural numbers k < n. It follows from the construction
that F is bijective. Thus N x N is a countable set. By the way, the inverse mapping F~! can be given
explicitly by
(n1 + ng — 2)(711 +ng—1)
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Now suppose that Eq, Fs,... are countable sets. Then for any n € N there exists a bijective
mapping f, : N — E,. Let us define a map g : Nx N — E; UFEy;U... by g(ny,n) = fn,(n2).
Obviously, g is onto. Since the set N x N is countable, there exists a sequence pi,p2,ps,... that
is a complete list of its elements. Then the sequence g(p1),9(p2),g(ps),... contains all elements of
the union F1 U Ey U E3 U ... Although the latter sequence may include repetitions, we can choose
a subsequence {g(pn,)} in which every element of the union appears exactly once. Note that the
subsequence is infinite since each of the sets E7, Fs,... is infinite. Then the map h of N defined by
h(k) = g(pn,), k =1,2,..., is a bijection onto £y UE; UE3U...

-1
F~ (n1,ng) = +n1, ni,no €N.

Problem 2 (20 pts.) Find the following limits:
. 1 n . /T =8 N c\"
(i) ili% log 1T cot(@?)’ (ii) mh_>n614 =1 (iii) nh_g)l()(l + ﬁ) , where ¢ € R.

The function

fz) = IOgH_Tt(:EQ)

can be represented as the composition of 4 functions: fi(x) = 22, fo(y) = coty, f3(z) = (1 + 2)7 1,
and fy(u) = logu. Since the function f; is continuous, we have lim0 fi(x) = f1(0) = 0. Moreover,
xr—

fi(z) > 0 for = # 0. Since liI(I)l+ coty = o0, it follows that fo(fi(z)) = 400 as x — 0. Further,
Yy—r

f3(z) = 0+ as z — 400 and fg(u) — —oo as u — 0+. Finally, f(x) = fa(fs(fa(f1(2)))) — —o0 as
z — 0.



To find the second limit, consider a function u(x) = /6 defined on (0, 00). Since this function is
continuous at 64 and u(64) = 2, we obtain
v -8 . (-2 +2+4)

Ww@)" =8 _ . v =8 _
e=64 Yz —4 264 (u(x))? —4 yod y?—4 42 (y—2)(y+2)

. V4+2y+4 Y +2y+4
y—2 y—|—2 y—|-2

y=2

Given ¢ € R, let a,, = (1 4+ ¢/n)™ for all n € N. For n large enough, we have 1 + ¢/n > 0 so that

an > 0. Then
C) ~ log(1+cx)

n
logan:10g<1+£> :n10g<1+—
n n x

z=1/n

Since 1/n — 0 as n — oo and
log(1
11m M — (log(l + C;U))l _ C _ C’
z—0 x e=0 l+ex|,_,

we obtain that loga, — ¢ as n — oco. Therefore a, = elogan _y o€ as n — 0.

Problem 3 (20 pts.) Prove that the series

e 2n—1 3 5 7
_1\n+1 z — _ZIZ'_ l’__!lf_
Z-:l( Vi~ ste at

converges to sinz for any = € R.

The function f(z) = sinz is infinitely differentiable on the entire real line. According to Taylor’s
formula, for any =,z € R and n € N,

/ " (n)
Fla) = o) + 200 o ) ¢ L) (o g2 TGO oy ),
where (n D)
for some 6 = 6(z, ) between x and xg. Since f'(r) = cosz and f”(z) = —sinx = —f(z) for all

z € R, it follows that |f(*+1) ()| < 1 for alln € N and 6 € R. Hence |R,(z,20)| < |z —x0|"/(n+1)!.
Let us fix x and x¢. Then there exists N € N such that N > 2|z —z|. For any natural number n > N

we have
|z — zo|™ Tt |z — |V 1

(n+1)l — NI 2ntl-N”

’Rn (‘Tu ‘TO)’ S
which implies that R, (x,z9) — 0 as n — oo. In other words, the series

f' (o) J" (o)
1! 21

f(x0)+ (l‘—l‘o)—l— (;17—;1;0)2+..._|_



converges to f(x) = sinz for all 2,29 € R. In the case zo = 0, the sequence {f™ ()} is a periodic

sequence 1,0,—1,0,1,0,—1,0,... Consequently, this series coincides with the series
o —
Z(_l)"+1£—x_$_3+x_5_x_7+
— (2n —1)! 3 57

up to zero terms.

Problem 4 (20 pts.) Find an indefinite integral and evaluate definite integrals:

/ V3 2 00
/ L+ Ve dx (ii) / 0 dz, (iii) / r?e " dx.
0 0

22+9

To find the indefinite integral, we change the variable twice. First

/VlJr /\/T dx_/\/Td /mdu,

where u = \/z. Secondly, we introduce another variable w = /1 + y/u. Then u = (w? — 1)? so that
du = ((w? - 1)2)/dw =2(w? — 1) - 2wdw = (4w® — 4w) dw. Consequently,

/JT /\/Tdu—/wdu—/(‘lw — 4w’y dw

4 4
=S’ - Sud 4O =

4
5 3 )

(1+21/4)>2 - %(1 T e

To evaluate the first definite integral, we use linearity of the integral, a substitution x = 3u, and
the fact that (arctanz) = 1/(1 + ?):

V3 2 V3 V3 V3
+6 3 3

= l1—-—— | de = 1dx — —d
/0 x2+9dx /0 ( x2+9> v /0 o /0 22 +9 v

Vas g VB
- Ve BuZ 19 =V3- —V3— 1/v3 o
= \/g /0 (3U)2 +9 d(3U) = \/g /0 ’LL2 1 du = \/g arctan u‘ \/_ 6

To evaluate the improper integral, we integrate by parts twice:

/ e dx = —/ 22 (e™) dx = —/ 2d(e™®) = —a? _x‘o +/ e d(x?)
0 0 0 0
= / e % (z?) dr = / 2xe ¥ dx = —/ 2z(e™ ") do = —/ 2xd(e™™)
0 0 0 0

—x | > —x > —x —x |
= —2ze ‘0 + e *d(2x) = 2¢ " dr = —2e7"| " = 2.
0 0

Problem 5 (20 pts.)  For each of the following series, determine whether the series
converges and whether it converges absolutely:



=V —/n N~ /1 + 2" cosn e (—1)m
(1) ; m, (11) ; T, (111) Z .
The first series diverges. Indeed,
ViTT- i _ (iR (VAT e VA 1

1
NIES T (VT 1+ ) (VnFl+va)y (@vnt1)P dnt1)

Since the series > 7 ; (4(n + 1))_1 diverges, it remains to apply the Comparison Test.

Let a, denote the n-th term of the second series. We have a,, = b, + ¢, cosn, where b, = \/n/n!
and ¢, = 2"/n! for all n € N. The series > 2, b, and Y~ ¢, both converge, which can be verified
with the Ratio Test:

() ()

—— — 0 as n — oo,

by  (n+ 1!\ nl n n+1
n+1 n\ —1
Cntl _ 2 z :L—>O as n — oo.
en (n+1)! \ n! n+1

Then the series Y~ | (b, + ¢;,) converges as well. Since |a,| < b, +¢, for all n € N, the series Y > ;| ay,
converges absolutely due to the Comparison Test.
The function f(z) = (zlogz)~! is positive and decreasing on [2,00). Moreover, li_)m f(z) = 0.
x o0
By the Alternating Series Test, the series Y - ,(—1)"/(nlogn) converges. However the convergence
is not absolute due to the Integral Test:

c 1 ¢ ! loge d
/ do = / (log z) dr = / @ _ log(log ¢) — log(log2) — +o00 as ¢ — +oo.
5 xlogx 9 logx log2 U

Bonus Problem 6 (15 pts.) Prove that an infinite product

ﬁn2—|—1_2 5 10 17
i on2 1409 16 77

k241
L2
For any n € N let a,, = (n2 + 1)/n2 and p, = a1as...a,. Then p, is a partial product of the given
infinite product. We have

converges, that is, partial products H:—1 converge to a finite limit as n — oo.

log p, = log(ajas...a,) =loga; +logas + -+ + log a,.

Using inequality logz < 2 — 1, which holds for all 2 > 0, we obtain that loga, < a, —1 = 1/n?.
Besides, loga,, > 0 since a, > 1. By the Comparison Test, the series ) 7, loga, converges. Since
log p,, is a partial sum of order n of this series, the sequence {log p,} converges to a finite limit L.
Then p,, = €'°8P» — el as n — oo.



