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Lecture 1:
Axioms of an ordered field.



Real line

Systematic study of the calculus of functions of one
variable begins with the study of the domain of such
functions, the set of real numbers R (real line).

The real line is a mathematical object rich with
structure. This includes:

e algebraic structure (4 arithmetic operations);
e ordering (for any three points, one is located
between the other two);

e metric structure (we can measure distances
between points);

e continuity (we can get from one point to
another in a continuous way).



Axiomatic model

The study of the real line begins with formulation of an
axiomatic model, which is to provide the solid foundation for
all subsequent developments.

The axiomatic model of the real numbers shall be formulated
using three postulates, each consisting of one or several
axioms. To verify that the axiomatic model is adequate, one
has to prove that the axioms are consistent (namely, there
exists an object satisfying them) and categorical (namely,
that object is, in a sense, unique).

The axioms are chosen among basic properties of the real
numbers, which ensures consistency. Postulate 1 formalizes
the algebraic structure, Postulate 2 formalizes the ordering,
and Postulate 3 formalizes the continuous structure (the
metric structure does not require a separate postulate; it can
be formalized in terms of the other structures).



Field

The real numbers R and the complex numbers C motivated
the introduction of an abstract algebraic structure called a
field. Informally, a field is a set with 4 arithmetic operations
(addition, subtraction, multiplication, and division) that have
roughly the same properties as those of real (or complex)
numbers.

The notion of field is important for the linear algebra.
Namely, a field is a set that can serve as a set of scalars for a
vector space.

Formally, a field is a set F equipped with two binary
operations, called addition and multiplication and denoted
accordingly, that satisfy a number of axioms.



Field: formal definition

A field is a set F equipped with two operations, addition
F x F>(a,b)— a+ b e F and multiplication
F x F>(ab)—a-beF, such that:

F1. a+b=b+a forall a,be F.

F2. (a+b)+c=a+(b+c) forall a,b,c€eF.

F3. There exists an element of F, denoted 0, such that
a+0=0+a=a forall a€F.

F4. For any a € F there exists an element of F, denoted —a,
such that a+ (—a) =(—a) +a=0.

F1'. a-b=b-a forall a,be F.

F2'. (a-b)-c=a-(b-c) forall a,b,c e F.

F3’. There exists an element of F different from 0, denoted 1,
such that a-1=1-a=a forall ae€ F.

F4'. Forany a € F, a# 0 there exists an element of F,
denoted a7 !, such that a-al=a1-a=1.

F5. a-(b+c)=(a-b)+(a-c) forall a,b,ceF.



Subtraction and division in the field F are defined
as follows: a—b=a+(—b), a/b=a-b"’.

Postulate 1. The set of real numbers R is a field.

Other examples of fields:
e Complex numbers C.
e Rational numbers Q.

e R(X): rational functions in variable X with real
coefficients.

e F; = {0,1}: field of two elements.

The operatlons are defined as follows:

0, 0+ 1 1+0=1
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Basic properties of fields

e The zero 0 is unique.

Suppose z; and z are both zeroes, that is,
atzyz=z+a=aand at+z=2z-+a=a forall aeF.
Then 21+ z=2 and zZ1+ 2 = Zz7. Hence Z1 = 2p.

e For any a € F, the negative —a is unique.
Suppose by and b, are both negatives of a. Let us compute
the sum b; + a+ b, in two ways:

(b1 +a)+ by =0+ by = by,
by +(a+ b)) =b +0=by.
By associativity of the addition, b; = bs.



Basic properties of fields

e (Cancellation law) a+ ¢ = b+ ¢ implies a=b

for any a,b,c € F.

If a+c=b+c then (a+c)+ ( c)

associativity, (a+c)+ (—c)=a+(c
c
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(b+c)+(—c). By
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+ 0= b. Hence
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e 0-a=0 forany ac F.

We have 0-a+a=0-a+1-a=(0+1)-a=1-a=a
= 0+ a. By the cancellation law, 0-a=0.

Indeed, a -+
=(-1+41)-a

e (—1)-a= —a forany a€ F.
(-

1)-a=(-1)-a+a=(-1)-a+1-a
0-a=0.



Basic properties of fields

e —(—a)=aforall acF.
° (—1)-(—1):1.
e (a—b)=b—aforall a,beF.

e The unity 1 is unique.

1

e For any a # 0, the inverse a~" is unique.

e (Cancellation law) ac = bc implies a=b
whenever ¢ # 0.

e Forany a,b e F the equality ab= 0 implies
that a=0 or b=0.



Relations

Recall that the Cartesian product X x Y of two
sets X and Y is the set of all ordered pairs (x, y)
such that x € X and y €Y.

The Cartesian square X x X is also denoted X?2.

Definition. A relation R on a set X is (identified
with) a subset of its Cartesian square: R C X2.

If (x,y) € R, then we say that x is related to y
(in the sense of R or by R) and write xRy.



Examples of relations

e ‘is equal to"

xRy <= x =y

e ‘is not equal to"

xRy <= x#y

e ‘is less than”

X=R, xRy <= x <y

e ‘is less than or equal to”
X=R, xRy <= x<y

e ‘is contained in"

X = the set of all subsets of some set Y,
XRy <= xCy

e ‘divides”

X=17Z, xRy <= y/x € Z



Properties of relations

Definition. Let R be a relation on a set X. We
say that R is

o reflexive if xRx for all x € X,

e symmetric if, for all x,y € X, xRy implies
yRx,

e antisymmetric if, for all x,y € X, xRy and
yRx cannot hold simultaneously,

e weakly antisymmetric if, for all x,y € X,
xRy and yRx imply that x =y,

e transitive if, for all x,y,z € X, xRy and yRz
imply that xRz.



Partial ordering

Definition. A relation R on a set X is a partial
ordering (or partial order, or simply order) if R is
reflexive, weakly antisymmetric, and transitive:

o xRXx,

e xRy and yRx — x =1y,

e xRy and yRz — xRz.

A relation R on a set X is a strict partial order (or
strict order) if R is antisymmetric and transitive:

e xRy = not yRx,

e xRy and yRz — xRz.

Examples. “is less than or equal to”, “is contained in”, “is a
divisor of” are partial orders. “is less than” is a strict order.



Linear order

Definition. An order R on a set X is called linear (or total)
if for any elements x,y € X at least one of the following
statements hold: xRy, yRx, or x =y.

Postulate 2. There is a relation on the set of real numbers R,
denoted <, that is a strict linear order. Moreover, this order
and arithmetic operations on R satisfy the following axioms:

OA. a< b implies a+c < b+ c forall a,b,c € R.

OM1. a< b and ¢ >0 imply ac < bc for all a, b,c € R.
OM2. a< b and ¢ <0 imply bc < ac forall a, b,c € R.

Two axioms OM1 and OM2 can be replaced by one:
OM. 0 < a and 0 < b imply 0 < ab for all a,b € R.

Auxiliary notation. a > b means that b<a. By a<b we
mean that a < b or a=b. By a < b < ¢ we mean that
a<band b<ec.



Basic properties of linearly ordered fields

a> 0 implies —a < 0.

a<b implies a— b < 0.

a>0and b<0 imply ab < 0.

a<0and b<0 imply ab> 0.
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a#0 implies 2> > 0 (where 2> = a- a).
0<1L

O<a<band 0< c<d implies ac < bd.

0<a<b implies at>b1>0.



