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Lecture 3:
Metric spaces.
Completeness axiom.
Existence of square roots.



Absolute value

Definition. The absolute value (or modulus) of a
real number a, denoted |a|, is defined as follows:

aif a>0,
|a] =

—a if a<0.

Properties of the absolute value:
e [a| =2 0;
la| =0 if and only if a=0;

| —al = al;

If M >0, then |a| <M <— —M < a< M,
|ab| = |a - [b];

|a+ b| < [a] + |b].



Metric space

Definition. Given a nonempty set X, a metric (or distance
function) on X is a function d : X x X — R that satisfies
the following conditions:

e (positivity) d(x,y) > 0 for all x,y € X; moreover,
d(x,y) =0 if and only if x = y;

e (symmetry) d(x,y) = d(y,x) forall x,y € X;

e (triangle inequality) d(x,y) < d(x,z)+ d(z,y) for all
x,y,z€ X.

A set endowed with a metric is called a metric space.



Theorem The function d(x,y) = |y — x| is a
metric on the real line R.

Proof: We have |y — x| >0 for all x,y € R.
Moreover, |y — x| =0 only if y — x =0, which is
equivalent to x = y. This proves positivity.

Symmetry follows since x —y = —(y — x) and
| —a| = |a| forall a€R.

Finally, d(x,y) = |y —x|=|(y —2) + (z = x)|
<ly—z|+|z—x|=d(z,y)+ d(x, 2).



Other examples of metric spaces

e FEuclidean space
X =R" d(x,y) =v/(y1 = x1)2+ (2 = %)%+ - - - + (¥ — xn)?.

e Normed vector space
X: vector space with a norm || - ||, d(x,y) =y — x|

e Discrete metric space
X: any nonempty set, d(x,y)=1if x#y and d(x,y)=0
if x=y.

e Space of sequences

X: set of all infinite words x = x;x, ... over a finite alphabet;
d(x,y)=2""if x; =y; for 1 <i<n while x,11 # Ynt1,
d(x,y)=0if x; =y, foralli>1.



Supremum and infimum

Definition. Let E C R be a nonempty set and M be a real

number. We say that M is an upper bound of the set E if
a<M forall a€ E. Similarly, M is a lower bound of the
set Eif a> M forall a€ E.

We say that the set E is bounded above if it admits an
upper bound and bounded below if it admits a lower bound.
The set E is called bounded if it is bounded above and below.

A real number M is called the supremum (or the least upper
bound) of the set E and denoted sup E if (i) M is an upper
bound of E and (ii) M < M, for any upper bound M, of E.

Similarly, M is called the infimum (or the greatest lower
bound) of the set E and denoted inf E if (i) M is a lower
bound of E and (ii) M > M_ for any lower bound M_ of E.



Axioms of real numbers

Definition. The set R of real numbers is a set
satisfying the following postulates:

Postulate 1. R is a field.

Postulate 2. There is a strict linear order < on R
that makes it into an ordered field.

Postulate 3 (Completeness Axiom).
If a nonempty subset E C R is bounded above,
then E has a supremum.



Theorem 1 Suppose X and Y are nonempty subsets of R
such that a < b forall a€ X and b€ Y. Then there exists
ce€R suchthat a<c forall ae X and c< b forall beY.

Proof: The set X is bounded above as any element of Y is
an upper bound of X. By Completeness Axiom, sup X exists.
We have a < sup X for all a € X since sup X is an upper
bound of X. Besides, sup X < b for any b€ Y since b is an
upper bound of X while sup X is the least upper bound.

Theorem 2 If a nonempty subset £ C R is bounded below,
then E has an infimum.

Proof: Let X denote the set of all lower bounds of E. Then
a<b forall ae€ X and b€ E. Since E is bounded below,
the set X is not empty. By Theorem 1, there exists ¢ € R
such that a<c forall ae X and ¢ < b forall b€ E.
That is, c is a lower bound of E and an upper bound of X.

It follows that ¢ = inf E.



Natural, integer, and rational numbers

Postulate 1 guarantees that R contains numbers 0 and 1.
Then we can define natural numbers 2=1+1, 3=2+1,
4 =3+ 1, and so on... It was proved in the previous lecture
that 0 < 1. Repeatedly adding 1 to both sides of this
inequality, we obtain 0 <1 <2 <3< ... In particular, all
these numbers are distinct.

However the entire set of natural numbers can only be defined
in an implicit way.

Definition. A set E C R is called inductive if 1 € E and,
for any real number x, x € E implies x+ 1€ E. Theset N
of natural numbers is the smallest inductive subset of R
(namely, it is the intersection of all inductive subsets of R).

The set of integers is defined as Z = —NU {0} UN.
The set of rationals is defined as Q={m/n | m € Z,n € N}.



Archimedean Principle

Theorem (Archimedean Principle) For any real number
€ > 0 there exists a natural number n such that ne > 1.

Remark. Archimedean Principle means that R contains no
infinitesimal (i.e., infinitely small) numbers other than 0.

Proof: In the case ¢ > 1, we can take n=1. Now assume
e < 1. Let E be the set of all natural numbers n such that
ne < 1. Observe that E is nonempty (1 € E) and bounded
above (1/¢ is an upper bound). By Completeness Axiom,

m = sup E exists. By definition of sup E, there exists n € E
such that n > m —1/2 (as otherwise m — 1/2 would be an
upper bound for E). Then n+ 1 is a natural number and
n+1>m+1/2>m. It follows that n+ 1 is not in E.
Consequently, (n+ 1)e > 1.

Corollary For any a, b > 0 there exists a natural number n
such that na > b.



Density of rational numbers

Theorem For any real numbers a and b, a < b, there exists
a rational number & such that a < £ < b.

Proof: By Archimedean Principle, there exists a natural
number n such that n(b —a) > 1. Let E be the set of all
integers m such that m/n < b. Observe that E is bounded
above (nb is an upper bound). Let us show that the set E is
not empty. In the case b > 0 it is obviousas —1 € E. In
the case b < 0, we have —b > 0. By Archimedean Principle,
there exists a natural number m such that m(—nb)™! > 1.
Then —m/n < b so that —m € E.

By Completeness Axiom, k = sup E exists. By definition of
sup E, there exists m € E such that m > k —1/2. Then
m—+1 is an integer and m+1 > k+ 1/2 > k, which implies
that m+1 is not in E. Therefore m/n < b < (m+1)/n.
Consequently, m/n>b—1/n>b—(b—a)=a. Thus
a<m/n<b.



Existence of square roots

Theorem For any a > 0 there exists a unique
number r > 0 (denoted /a) such that r?> = a.

We begin the proof with the following simple lemmas.

Lemma 1 Suppose r and t are positive numbers. Then
r? < t? if and only if r < t.

Lemma 2 Suppose r and t are positive numbers. Then
r? = t? if and only if r = t.

Proof of Lemmas 1 and 2: By linearity of the order on R, we
have either r <t or r>t or r=1t. Since r,t >0, we
obtainthat r<t = r?<t?> and r >t = r?> > t°.
Besides, r =t = r?> = t?. We conclude that r? < t? if
and only if r < t. Also, r?> = t? if and only if r = t. .

Lemma 2 immediately implies uniqueness of \/a.



To prove existence of the square root /a, let us consider a set
E={x>0]|x?®<a}. We shall show that r =sup E is the
desired number. First we need to verify that sup E exists. By
Completeness Axiom, it is enough to check that the set E is
nonempty and bounded above. Moreover, Lemma 1 implies
that any b > 0 satisfying a < b? is an upper bound of E.

Consider three cases: a>1, a< 1, and a=1.

If a>1 then 1€ E. Also, a < a® so that ais an upper
bound of E. If a< 1 then a®> < a sothat ac E. Also, 1is
an upper bound for E. If a=1, then 1/2 € E and 1is an
upper bound of E.

Thus r = sup E exists. Clearly, r > 0. We claim that
r> = a. Assume the contrary. Then r?> < a or r? > a.
In the 1st case, there is no t > 0 such that r?> < t? < a.
In the 2nd case, there is no t > 0 such that a < t? < r2.
Now we get a contradiction once the following lemma is

proved:



Lemma 3 Suppose a and r are positive real numbers and
a # r®. Then there exists t > 0 such that t? lies between a
and r?,ie, a<t’<r’or r’r<t’<a.

Proof: First we consider a special case when 0 < a< 1 and
r=1. Let us show that t = (1+ a)/2 is a desired number in
this case. Indeed, 0 < a< 1 impliesthat 1 <14 a< 2,
then 0 <t <1 and t> <t <1 Further, 4(t>—a) =

= (2t)> —4a= (1+a)> —4a= (1+2a+a*) —4a=1—-2a+2a°
=(1—a)>>0since 1—a>0. Hence a<t>?<1=r2

Next we consider a more general case a < r?. In this case,
0<ar?<1, where r2=(r?)"!, which is also (r71)2.
By the above there exists t > 0 such that ar=2 < t? < 1.

Then tr is a positive number and a < t2r? = (tr)? < r?.

It remains to consider the case r?> < a. In this case,
0<al<r2=(r1)?2 By the above there exists t >0
such that a=! < t2 < r=2. Then t~! is a positive number and
r<t?=(t1)2?<a -



