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Advanced Calculus I

Lecture 6:

Limits of sequences.

Limit theorems.



Convergence of a sequence

A sequence of elements of a set X is a function f : N → X .
Notation: x1, x2, . . . , where xn = f (n), or {xn}n∈N, or {xn}.

Definition. Sequence {xn} of real numbers is said to converge

to a real number a if for any ε > 0 there exists N ∈ N such
that |xn − a| < ε for all n ≥ N. The number a is called the
limit of {xn}. Notation: lim

n→∞

xn = a, or xn → a as n → ∞.

A sequence is called convergent if it has a limit and
divergent otherwise.

The condition |xn − a| < ε is equivalent to
a − ε < xn < a + ε or to xn ∈ (a − ε, a+ ε). The interval
(a − ε, a + ε) is called the ε-neighborhood of the point a.
The convergence xn → a means that any ε-neighborhood of a
contains all but finitely many elements of the sequence {xn}.



Examples

• The sequence {1/n}n∈N converges to 0.

By the Archimedean Principle, for any ε > 0 there exists a
natural number N such that Nε > 1. Then for any integer
n ≥ N we have nε ≥ Nε > 1 so that 1/n < ε. Since
1/n > 0, we obtain |1/n| < ε for all n ≥ N.

• Constant sequence {xn}, where xn = a for some

a ∈ R and all n ∈ N.

Since |xn − a| = 0 for all n ∈ N, the sequence converges to a.

• Sequence {(−1)n}n∈N, i.e., −1, 1,−1, 1, . . . , is
divergent.

• Sequence {n}n∈N, i.e., 1, 2, 3, 4, . . . , is
divergent.



Basic properties of convergent sequences

• The limit is unique.
Suppose a and b are distinct real numbers. Let
ε = |b − a|/2. Then ε-neighborhoods of a and b are disjoint.
Hence they cannot both contain all but finitely many elements
of the same sequence.

• Any convergent sequence {xn} is bounded,

which means that the set of its elements is bounded.
This follows from three facts: any ε-neighborhood is bounded,
any finite set is bounded, and the union of two bounded sets is
also bounded.

• Any subsequence converges to the same limit.
Here a subsequence of a sequence {xn}n∈N is any sequence of
the form {xnk}k∈N, where {nk} is an increasing sequence of
natural numbers (note that nk ≥ k).



Divergence to infinity

Definition. A sequence {xn} is said to diverge to

infinity if for any C > 0 there exists N ∈ N such

that |xn| > C for all n ≥ N .

Observe that such a sequence is indeed divergent as
it is not bounded.

Definition. A sequence {xn} is said to diverge to

+∞ if for any C ∈ R there exists N ∈ N such
that xn > C for all n ≥ N . Likewise, {xn} is said

to diverge to −∞ if for any C ∈ R there exists
N ∈ N such that xn < C for all n ≥ N .

Example. The sequence {n}n∈N diverges to +∞.



Squeeze Theorem

Theorem Suppose {xn}, {yn}, and {wn} are three
sequences of real numbers such that

xn ≤ wn ≤ yn for all sufficiently large n.

If the sequences {xn} and {yn} both converge to
the same limit a, then {wn} converges to a as well.

Proof: Since lim
n→∞

xn = lim
n→∞

yn = a, for any ε > 0 there exist

natural numbers N1 and N2 such that a − ε < xn < a + ε for
all n ≥ N1 and a − ε < yn < a + ε for all n ≥ N2. Besides,
there exists N0 ∈ N such that xn ≤ wn ≤ yn for all n ≥ N0.
Set N = max(N0,N1,N2). Then for any natural number
n ≥ N we have a − ε < xn ≤ wn ≤ yn < a + ε, which implies
that a − ε < wn < a + ε. Thus lim

n→∞

wn = a.



Comparison Theorem

Theorem Suppose {xn} and {yn} are convergent
sequences. If xn ≤ yn for all sufficiently large n,

then lim
n→∞

xn ≤ lim
n→∞

yn.

Proof: Let a = lim
n→∞

xn and b = lim
n→∞

yn. Assume to the

contrary that a > b. Then ε = (a − b)/2 is a positive
number. Hence there exists a natural number N such that
|xn − a| < ε and |yn − b| < ε for all n ≥ N. In particular,
yn < b + ε and a − ε < xn for n ≥ N. However
b + ε = a − ε = (a + b)/2, which implies that yn < xn for all
n ≥ N, a contradiction.

Corollary If all elements of a convergent sequence
{xn} belong to a closed interval [a, b], then the
limit belongs to [a, b] as well.



Convergence and arithmetic operations

Theorem Suppose {xn} and {yn} are convergent sequences
of real numbers. Then the sequences {xn + yn}n∈N and
{xn − yn}n∈N are also convergent.

Moreover, if a = lim
n→∞

xn and b = lim
n→∞

yn, then

lim
n→∞

(xn + yn) = a + b and lim
n→∞

(xn − yn) = a − b.

Proof: Since lim
n→∞

xn = a and lim
n→∞

yn = b, for any ε > 0

there exists a natural number N such that |xn − a| < ε/2 and
|yn − b| < ε/2 for all n ≥ N. Then for any n ≥ N we obtain

|(xn + yn)− (a + b)| = |(xn − a) + (yn − b)|
≤ |xn − a|+ |yn − b| < ε/2 + ε/2 = ε,

|(xn − yn)− (a − b)| = |(xn − a) + (b − yn)|
≤ |xn − a|+ |b − yn| = |xn − a|+ |yn − b| < ε.

Thus xn + yn → a + b and xn − yn → a − b as n → ∞.



Theorem Suppose {xn} and {yn} are convergent sequences
of real numbers. Then the sequence {xnyn}n∈N is also
convergent. Moreover, if a = lim

n→∞

xn and b = lim
n→∞

yn, then

lim
n→∞

xnyn = ab.

Proof: Since xn → a and yn → b as n → ∞, for any δ > 0
there exists N(δ) ∈ N such that |xn− a| < δ and |yn−b| < δ
for all n ≥ N(δ). Then for any n ≥ N(δ) we obtain

|xnyn − ab| = |xnyn − ayn + ayn − ab| = |(xn−a)yn + a(yn−b)|
= |(xn − a)yn − (xn − a)b + (xn − a)b + a(yn − b)|
= |(xn − a)(yn − b) + (xn − a)b + a(yn − b)|
≤ |(xn − a)(yn − b)|+ |(xn − a)b|+ |a(yn − b)|
= |xn − a| |yn − b|+ |b| |xn − a|+ |a| |yn − b|
< δ2 + (|a|+ |b|)δ.

Now, given ε > 0, we set δ = min(1, (1 + |a|+ |b|)−1ε).
Then δ > 0 and δ2 + (|a|+ |b|)δ ≤ (1 + |a|+ |b|)δ ≤ ε.
By the above, |xnyn − ab| < ε for all n ≥ N(δ).



Theorem Suppose that a sequence {xn} converges
to some a ∈ R. If a 6= 0 and xn 6= 0 for all n ∈ N,
then the sequence {x−1

n
}n∈N converges to a−1.

Proof: Since xn → a as n → ∞, for any δ > 0 there exists
N(δ) ∈ N such that |xn − a| < δ for all n ≥ N(δ).

Given ε > 0, we set δ = min(|a|/2, |a|2ε/2). Then for any
n ≥ N(δ) we have |xn − a| < |a|/2. Since

|a| ≤ |a − xn|+ |xn| = |xn − a|+ |xn|,

it follows that |xn| ≥ |a| − |xn − a| > |a| − |a|/2 = |a|/2.

Furthermore, for any n ≥ N(δ) we obtain
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We conclude that 1/xn → 1/a as n → ∞.



Corollary 1 If lim
n→∞

xn = a, then lim
n→∞

cxn = ca for

any c ∈ R.

Corollary 2 If lim
n→∞

xn = a, then lim
n→∞

(−xn) = −a.

Corollary 3 If lim
n→∞

xn = a, lim
n→∞

yn = b, and,

moreover, b 6= 0 and yn 6= 0 for all n ∈ N, then

lim
n→∞

xn/yn = a/b.

Proof: Since b 6= 0 and yn 6= 0 for all n ∈ N, it follows that
y−1

n
→ b−1 as n → ∞. Since xn/yn = xny

−1

n
for all n ∈ N,

we obtain that xn/yn → ab−1 = a/b as n → ∞.


