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Lecture 7:
Monotone sequences.
The Bolzano-Weierstrass theorem.



Limit of a sequence

Definition. Sequence {x,} of real numbers is said to
converge to a real number a if for any € > 0 there exists

N € N such that |x, —a| < e forall n> N. The number a
is called the limit of {x,}.

A sequence is called convergent if it has a limit and
divergent otherwise.

Properties of convergent sequences:

e the limit is unique;

e any convergent sequence is bounded;

e any subsequence of a convergent sequence converges to
the same limit;

e modifying a finite number of elements cannot affect
convergence of a sequence or change its limit;

e rearranging elements of a sequence cannot affect its
convergence or change its limit.



Limit theorems

Theorem 1 If |lim x, = lim y, =a and
n—o0 n—o0

x, < w, <y, for all sufficiently large n, then

lim w, = a.

n—00

Theorem 2 If |lim x,=a, lim y,=b, and
n—oo n—o0

x, <y, for all sufficiently large n, then a < b.

Theorem 3 If |lim x,=a and |im y, = b,
n—o0 n—o0

then lim (x,+y,) =a+b, lim(x,—y,) =a—b,
n—o0 n—00
and lim x,y, = ab. If, additionally, b # 0 and

n—00

Yo # 0 for all n € N, then lim x,/y, = a/b.
n—o0



Examples

M n
o lim SNCED
n—o00 n

—1/n <sin(e")/n <1/n forall n €N since —1 <sinx <1
for all x € R. As shown in the previous lecture, 1/n — 0 as
n—oo. Then =1/n— —1-0=0 as n— oco. By the
Squeeze Theorem, sin(e")/n — 0 as n — oo.

1
e |lim —=0.
n—o0 2N
The sequence {1/2"} is a subsequence of {1/n}. Hence it is
converging to the same limit.



Examples

. (1+2n)
o |Im - —~ =
n—o00 1+2n2

(1+2n)>  (1+2n)?/n*  (1/n+2)
112 (L+2m)/n?  (1/n)2 12 for all n e N.

Since 1/n— 0 as n — oo, it follows that

1/n4+2—=04+2=2 as n— oo,
(1/n+2)> -2 =4 as n— o0,
(1/n)> - 02=0 as n— oo,
(1/n)?>+2—-0+2=2 as n— oo,

1 2)2 4
Afn+2* 4 _,

and, finally, DEYIRE



Monotone sequences

Definition. A sequence {x,} is called increasing (or

nondecreasing) if x; < x < x3 < ... or, to be precise,
X, < Xpy1 for all n € N. It is called strictly increasing if
xX; < Xp < x3<..., thatis, x, < x,y1 forall ne N.

Likewise, the sequence {x,} is called decreasing (or
nonincreasing) if x, > x,.1 for all n € N. It is called
strictly decreasing if x, > x,,; for all n € N.

Increasing and decreasing sequences are called monotone.

Examples:

e the sequence {1/n} is strictly decreasing;

e the sequence 1,1,2,2,3,3,... is increasing, but not
strictly increasing;

e the sequence —1,1,—1,1,—1,1,... is neither increasing

nor decreasing;
e a constant sequence is both increasing and decreasing.



Theorem Any increasing sequence converges to a
limit if it is bounded, and diverges to +00 otherwise.

Proof: Let {x,} be an increasing sequence. First consider
the case when {x,} is bounded. In this case, the set E of all
elements occurring in the sequence is bounded. Then sup E
exists. We claim that x, — sup E as n — co. Take any

€ > 0. Then sup E — ¢ is not an upper bound of E. Hence
there exists ny € N such that x,, > sup E — €. Since the
sequence is increasing, it follows that x, > x,, > supE — ¢
for all n > ng. At the same time, x, <sup E for all n € N.
Therefore |x, —sup E| < e for all n > ng, which proves the
claim.

Now consider the case when the sequence {x,} is not
bounded. Note that the set E is bounded below (as x; is a
lower bound). Hence E is not bounded above. Then for any
C € R there exists ny € N such that x,, > C. It follows that
Xp > Xp, > C forall n> ng. Thus {x,} diverges to +o0.



Theorem Any decreasing sequence converges to a
limit if it is bounded, and diverges to —oo otherwise.

Proof: Let {x,} be a decreasing sequence. Then the
sequence {—x,} is increasing since the inequality a > b is
equivalent to —a < —b for all a, b € R. By the previous
theorem, either —x, — ¢ for some c € R as n — oo, or else
—Xx, diverges to +00. In the former case, x, - —c as

n — oo (in particular, it is bounded). In the latter case, x,
diverges to —oo (in particular, it is unbounded).

Corollary Any monotone sequence converges to a
limit if it is bounded, and diverges to infinity
otherwise.



Nested intervals property

Definition. A sequence of sets /1, b, ... is called nested if
ho>h>..., thatis, I, D /,.; forall neN.

Theorem If {/,} is a nested sequence of nonempty closed
bounded intervals, then the intersection ﬂneN I, is nonempty.
Moreover, if lengths |/, of the intervals satisfy |/, — 0 as

n — oo, then the intersection consists of a single point.

Remark 1. The theorem may not hold if the intervals

li, L, ... are open. Counterexample: [, = (0,1/n), n€ N.
The intervals are nested and bounded, but their intersection is
empty since 1/n— 0 as n — oc.

Remark 2. The theorem may not hold if the intervals

li, I, ... are not bounded. Counterexample: [, = [n, c0),

n € N. The intervals are nested and closed, but their
intersection is empty since the sequence {n} diverges to +oc.



Proof of the theorem

Let I, =[an, ba], n=1,2,... Since the sequence {/,} is
nested, it follows that the sequence {a,} is increasing while
the sequence {b,} is decreasing. Besides, both sequences are
bounded (since both are contained in the interval /;). Hence
both are convergent: a, — a and b, — b as n — oco. Since
a, < b, for all n € N, the Comparison Theorem implies that
a<b. Weclaim that (,.y/» = [a, b]. Indeed, we have

a, < a for all n € N (by the Comparison Theorem applied to
aj, ap, ... and the constant sequence a,, ap, a,...).

Similarly, b < b, for all n € N. Therefore [a, b] is contained
in the intersection. On the other hand, if x < a then x < a,
for some n so that x ¢ [,. Similarly, if x > b then x > b,
for some m so that x ¢ /,,. This proves the claim.

Clearly, the length of [a, b] cannot exceed |I,| for any n € N,
Therefore |I,| — 0 as n — oo implies that [a, b] is a
degenerate interval: a = b.



Bolzano-Weierstrass Theorem

Theorem Every bounded sequence of real numbers
has a convergent subsequence.

Proof: Let {x,} be a bounded sequence of real numbers. We
are going to build a nested sequence of intervals I, = [a,, b,
n=1,2,..., such that each /, contains infinitely many
elements of {x,} and |l,41]| = |[,|/2 for all n € N. The
sequence is built inductively. First we set /; to be any closed
bounded interval that contains all elements of {x,} (such an
interval exists since the sequence {x,} is bounded). Now
assume that for some n € N the interval /, is already chosen
and it contains infinitely many elements of the sequence {x,}.
Then at least one of the subintervals I’ = [a,, (a, + b,)/2)]
and 1" = [(a, + bn)/2, by] also contains infinitely many
elements of {x,}. We set /,.; to be such a subinterval. By
construction, l,41 C I, and |l41| = |1,]/2.



Proof (continued): Since |l,41] = |1,|/2 for all n € N, it
follows by induction that |/,| = |]/2"! forall n€N. Asa
consequence, |l,| — 0 as n — oco. By the nested intervals
property, the intersection of the intervals /i, b, I, ... consists
of a single number a.

Next we are going to build a strictly increasing sequence of
natural numbers ny, ny, ... such that x, & I forall k € N.
The sequence is built inductively. First we choose n; so that
Xn, € . Now assume that for some k € N the number ny is
already chosen. Since the interval /1 contains infinitely
many elements of the sequence {x,}, there exists m > ny
such that x,, € lxy1. We set ng 1 = m.

Now we claim that the subsequence {x,, }xen of the sequence
{x,} converges to a. Indeed, for any k € N the points x,,
and a both belong to the interval /. Hence |x,, — a| < |/].
Since |lk] = 0 as k — oo, it follows that x, — a as

k — oc.



