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Advanced Calculus I

Lecture 8:
Monotone sequences (continued).

Cauchy sequences.
Limit points.



Monotone sequences

Definition. A sequence {xn} is called increasing

(or nondecreasing) if xn ≤ xn+1 for all n ∈ N.
It is called strictly increasing if xn < xn+1 for all
n ∈ N.

Likewise, the sequence {xn} is called decreasing
(or nonincreasing) if xn ≥ xn+1 for all n ∈ N.

It is strictly decreasing if xn > xn+1 for all n ∈ N.

Increasing and decreasing sequences are called
monotone.

Theorem Any monotone sequence converges to a
limit if bounded, and diverges to infinity otherwise.



Examples

• If 0 < a < 1 then an → 0 as n → ∞.

Since a < 1 and a > 0, it follows that an+1 < an and an > 0
for all n ∈ N. Hence the sequence {an} is strictly decreasing
and bounded. Therefore it converges to some x ∈ R. Since
an+1 = ana for all n, it follows that an+1 → xa as n → ∞.
However the sequence {an+1} is a subsequence of {an}, hence
it converges to the same limit as {an}. Thus xa = x , which
implies that x = 0.

• If a > 1 then an → +∞ as n → ∞.

Since a > 1, it follows that an+1 > an > 1 for all n ∈ N.
Hence the sequence {an} is strictly increasing. Then {an}
either diverges to +∞ or converges to a limit x . In the latter
case we argue as above to obtain that x = 0. However this
contradicts with an > 1. Thus {an} diverges to +∞.



Examples

• If a > 0 then n
√
a → 1 as n → ∞.

Remark. By definition, n
√
a is a unique positive number r

such that r n = a.

If a ≥ 1 then an+1 ≥ an ≥ 1 for all n ∈ N, which implies

that
n(n+1)

√
an+1 ≥ n(n+1)

√
an ≥ 1. Notice that

n(n+1)
√
an+1 = n

√
a

and n(n+1)
√
an = n+1

√
a. Hence n

√
a ≥ n+1

√
a ≥ 1 for all n.

Similarly, in the case 0 < a < 1 we obtain that
n
√
a < n+1

√
a < 1 for all n.

In either case, the sequence { n
√
a} is monotone and bounded.

Therefore it converges to a limit x . Then the sequence { 2n
√
a}

also converges to x since it is a subsequence of { n
√
a}. At the

same time, ( 2n
√
a)2 = n

√
a, which implies that x2 = x . Hence

x = 0 or x = 1. However the limit cannot be 0 since
n
√
a ≥ min(a, 1) > 0. Thus x = 1.



Examples

• The sequence xn =
(

1 +
1

n

)

n

, n = 1, 2, 3, . . . ,

is increasing and bounded, hence it is convergent.

Remark. The limit is the number e = 2.71828 . . .

First let us show that {xn} is increasing. For any n ∈ N,

xn =

(

1 +
1

n

)n

=

(

n + 1

n

)n

=
(n + 1)n

nn
.

If n ≥ 2 then, similarly, xn−1 =
nn−1

(n − 1)n−1
. Hence

xn

xn−1
=

(n + 1)n

nn
· (n − 1)n−1

nn−1
=

(

(n + 1)(n− 1)

n2

)n−1

· n + 1

n

=

(

n2 − 1

n2

)n−1

· n + 1

n
=

(

1− 1

n2

)n−1 (

1 +
1

n

)

.



To proceed, we need the following estimate.

Lemma If 0 < x < 1, then (1− x)k ≥ 1− kx for all k ∈ N.

Using the lemma, we obtain that

xn

xn−1
=

(

1− 1

n2

)n−1(

1 +
1

n

)

≥
(

1− n − 1

n2

)(

1 +
1

n

)

= 1− n − 1

n2
+

1

n
− n − 1

n3
= 1 +

1

n2
− n − 1

n3
= 1 +

1

n3
> 1.

Thus the sequence {xn} is strictly increasing.

Proof of the lemma: The lemma is proved by induction on k.
The case k = 1 is trivial as (1− x)1 = 1− 1 · x . Now
assume that the inequality (1− x)k ≥ 1− kx holds for some
k ∈ N and all x ∈ (0, 1). Then (1− x)k+1 = (1− x)k(1− x)
≥ (1− kx)(1− x) = 1− kx − x + kx2 > 1− (k + 1)x .

Remark. According to the Binomial Formula,

(1− x)k = 1− kx + k(k−1)
2

x2 − . . .



Now let us show that the sequence {xn} is bounded. Since
{xn} is increasing, it is enough to show that it is bounded
above. By the Binomial Formula,

xn =

(

1 +
1

n

)n

=

n
∑

k=0

(

n

k

)(

1

n

)k

=

n
∑

k=0

n!

k! (n − k)!

(

1

n

)k

.

Observe that
n!

(n − k)!

(

1

n

)k

≤ 1 for all k, 0 ≤ k ≤ n.

It follows that xn ≤
∑n

k=0

1

k!
= 1 +

1

1!
+

1

2!
+ · · ·+ 1

n!
.

Further observe that k! ≥ 2k−1 for all k ≥ 0. Therefore we
obtain

xn ≤ 1 + 1 +
1

2
+

1

22
+ · · ·+ 1

2n−1
= 3− 1

2n−1
< 3.



Cauchy sequences

Definition. A sequence {xn} of real numbers is

called a Cauchy sequence if for any ε > 0 there
exists N ∈ N such that |xn − xm| < ε whenever
n,m ≥ N .

Theorem Any convergent sequence is Cauchy.

Proof: Let {xn} be a convergent sequence and a be its limit.
Then for any ε > 0 there exists N ∈ N such that
|xn − a| < ε/2 whenever n ≥ N. Now for any natural
numbers n,m ≥ N we have

|xn−xm| = |xn−a+a−xm| ≤ |xn−a|+|xm−a| < ε/2+ε/2 = ε.

Thus {xn} is a Cauchy sequence.



Theorem Any Cauchy sequence is convergent.

Proof: Suppose {xn} is a Cauchy sequence. First let us show
that this sequence is bounded. Since {xn} is Cauchy, there
exists N ∈ N such that |xn − xm| < 1 whenever n,m ≥ N.
In particular, |xn − xN | < 1 for all n ≥ N. Then
|xn| = |(xn − xN) + xN | ≤ |xn − xN |+ |xN| < |xN |+ 1.
It follows that for any n ∈ N we have |xn| ≤ M , where
M = max(|x1|, |x2|, . . . , |xN−1|, |xN|+ 1).

Now the Bolzano-Weierstrass theorem implies that {xn} has a
subsequence {xnk}k∈N converging to some a ∈ R. Given
ε > 0, there exists Kε ∈ N such that |xnk − a| < ε/2 for all
k ≥ Kε. Also, there exists Nε ∈ N such that |xn − xm| < ε/2
whenever n,m ≥ Nε. Let k = max(Kε,Nε). Then k ≥ Kε

and nk ≥ k ≥ Nε. Therefore for any n ≥ Nε we obtain
|xn − a| = |(xn − xnk ) + (xnk − a)| ≤ |xn − xnk |+ |xnk − a| <
ε/2+ ε/2 = ε. Thus the entire sequence {xn} converges to a.



Limit points

Definition. A limit point of a sequence {xn} is the

limit of any convergent subsequence of {xn}.
Examples and properties.

• A convergent sequence has only one limit point, its limit.
• Any bounded sequence has at least one limit point.
• If a bounded sequence is not convergent, then it has at
least two limit points.
• The sequence {(−1)n} has two limit points, 1 and −1.
• If all elements of a sequence belong to a closed interval
[a, b], then all its limit points belong to [a, b] as well.
• The set of limit points of the sequence {sin n} is the entire
interval [−1, 1].
• If a sequence diverges to infinity, then it has no limit points.
• If a sequence does not diverge to infinity, then it has a
bounded subsequence and hence it has a limit point.


