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Advanced Calculus I

Lecture 10:

Continuity.

Properties of continuous functions.



Continuity

Definition. Given a set E ⊂ R, a function f : E → R, and a
point c ∈ E , the function f is continuous at c if for any
ε > 0 there exists δ = δ(ε) > 0 such that |x − c| < δ and
x ∈ E imply |f (x)− f (c)| < ε.

We say that the function f is continuous on a set E0 ⊂ E if
f is continuous at every point c ∈ E0. The function f is
continuous if it is continuous on the entire domain E .

Remarks. • In the case E = (a, b), the function f is
continuous at a point c ∈ E if and only if f (c) = lim

x→c

f (x).

• In the case E = [a, b], the function f is continuous at a
point c ∈ (a, b) if f (c) = lim

x→c

f (x). It is continuous at a if

f (a) = lim
x→a+

f (x) and continuous at b if f (b) = lim
x→b−

f (x).



Theorem A function f : E → R is continuous at
a point c ∈ E if and only if for any sequence {xn}

of elements of E , xn → c as n → ∞ implies
f (xn) → f (c) as n → ∞.

Theorem Suppose that functions f , g : E → R

are both continuous at a point c ∈ E . Then the

functions f + g , f − g , and fg are also continuous
at c . If, additionally, g(c) 6= 0, then the function

f /g is continuous at c as well.



Bounded functions

Definition. A function f : E → R is bounded on a subset

E0 ⊂ E if there exists C > 0 such that |f (x)| ≤ C for all
x ∈ E0. In the case E0 = E , we say that f is bounded.

The function f is bounded above on E0 if there exists C ∈ R

such that f (x) ≤ C for all x ∈ E0. It is bounded below on
E0 if there exists C ∈ R such that f (x) ≥ C for all x ∈ E0.

Equivalently, f is bounded on E0 if the image f (E0) is a
bounded subset of R. Likewise, the function f is bounded
above on E0 if the image f (E0) is bounded above. It is
bounded below on E0 if f (E0) is bounded below.

Example. h : R → R, h(0) = 0, h(x) = 1/x for x 6= 0.

The function h is unbounded. At the same time, it is
bounded on [1,∞) and on (−∞,−1]. It is bounded below
on (0,∞) and bounded above on (−∞, 0).



Theorem If I = [a, b] is a closed, bounded

interval of the real line, then any continuous
function f : I → R is bounded.

Proof: Assume that a function f : I → R is unbounded.
Then for every n ∈ N there exists a point xn ∈ I such that
|f (xn)| > n. We obtain a sequence {xn} of elements of I such
that the sequence {f (xn)} diverges to infinity.

Since the interval I is bounded, the sequence {xn} has a
convergent subsequence {xnk} (due to the Bolzano-
Weierstrass Theorem). Let c = lim

k→∞

xnk . Then c ∈ [a, b]

(due to the Comparison Theorem). Since the sequence
{f (xnk )} is a subsequence of {f (xn)}, it diverges to infinity.
In particular, it does not converge to f (c). It follows that the
function f is discontinuous at c.

Thus any continuous function on [a, b] has to be bounded.



Discontinuities

A function f : E → R is discontinuous at a point c ∈ E if
it is not continuous at c. There are various kinds of
discontinuities including the following ones.

• The function f has a jump discontinuity at a point c if
both one-sided limits at c exist, but they are not equal:
lim

x→c−

f (x) 6= lim
x→c+

f (x).

• The function f has a removable discontinuity at a point
c if the limit at c exists, but it is different from the value at c:
lim
x→c

f (x) 6= f (c).

• If the function f is continuous at a point c, then it is
locally bounded at c, which means that f is bounded on the
set (c − δ, c + δ)∩ E provided δ > 0 is small enough. Hence
any function not locally bounded at c is discontinuous at c.



Examples

• Constant function: f (x) = a for all x ∈ R and
some a ∈ R.

Since lim
x→c

f (x) = a for all c ∈ R, the function f is

continuous.

• Identity function: f (x) = x , x ∈ R.

Since lim
x→c

f (x) = c for all c ∈ R, the function is continuous.

• Step function: f (x) =

{

1 if x > 0,

0 if x ≤ 0.

Since lim
x→0−

f (x) = 0 and lim
x→0+

f (x) = 1, the function has a

jump discontinuity at 0. It is continuous on R \ {0}.



Examples

• f (0) = 0 and f (x) =
1

x
for x 6= 0.

Since lim
x→c

f (x) = 1/c for all c 6= 0, the function f is

continuous on R \ {0}. It is discontinuous at 0 as it is not
locally bounded at 0.

• f (0) = 0 and f (x) = sin
1

x
for x 6= 0.

Since lim
x→0+

f (x) does not exist, the function is discontinuous

at 0. Notice that it is neither jump nor removable
discontinuity, and the function f is bounded.

• f (0) = 0 and f (x) = x sin
1

x
for x 6= 0.

Since lim
x→0

f (x) = 0, the function is continuous at 0.



Examples

• Dirichlet function: f (x) =

{

1 if x ∈ Q,
0 if x ∈ R \Q.

Since lim
x→c

f (x) never exists, the function has no points of

continuity.

• Riemann function:

f (x) =

{

1/q if x = p/q, a reduced fraction,
0 if x ∈ R \Q.

Since lim
x→c

f (x) = 0 for all c ∈ R, the function f is

continuous at irrational points and discontinuous at rational
points. Moreover, all discontinuities are removable.



Extreme Value Theorem

Theorem If I = [a, b] is a closed, bounded interval of the
real line, then any continuous function f : I → R attains its
extreme values (maximum and minimum) on I . To be precise,
there exist points xmin, xmax ∈ I such that

f (xmin) ≤ f (x) ≤ f (xmax) for all x ∈ I .

Remark 1. The theorem may not hold if the interval I is not
closed. Counterexample: f (x) = x , x ∈ (0, 1). Neither
maximum nor minimum is attained.

Remark 2. The theorem may not hold if the interval I is not
bounded. Counterexample: f (x) = 1/(1 + x2), x ∈ [0,∞).
The maximal value is attained at 0 but the minimal value is
not attained.



Extreme Value Theorem

Proof of the theorem: Since the function f is continuous, it is
bounded on I . Hence m = inf

x∈I

f (x) and M = sup
x∈I

f (x) are

well-defined numbers. In different notation: m = inf f (I ),
M = sup f (I ). Clearly, m ≤ f (x) ≤ M for all x ∈ I .

For any n ∈ N the number M − 1

n
is not an upper bound of

the set f (I ) while m + 1

n
is not a lower bound of f (I ). Hence

we can find points xn, yn ∈ I such that f (xn) > M − 1

n
and

f (yn) < m + 1

n
. By construction, f (xn) → M and

f (yn) → m as n → ∞. The Bolzano-Weierstrass Theorem
implies that the sequences {xn} and {yn} have convergent
subsequences (or, in other words, they have limit points).
Let c be a limit point of {xn} and d be a limit point of {yn}.
Notice that c, d ∈ I . The continuity of f implies that f (c) is
a limit point of {f (xn)} and f (d) is a limit point of {f (yn)}.
We conclude that f (c) = M and f (d) = m.



Intermediate Value Theorem

Theorem If a function f : [a, b] → R is continuous then any
number y0 that lies between f (a) and f (b) is a value of f , i.e.,
y0 = f (x0) for some x0 ∈ [a, b].

Proof: In the case f (a) = f (b), the theorem is trivial. In
the case f (a) > f (b), we notice that the function −f is
continuous on [a, b], −f (a) < −f (b), and −y0 lies between
−f (a) and −f (b). Hence we can assume without loss of
generality that f (a) < f (b).

Further, if a number y0 lies between f (a) and f (b), then 0 lies
between f (a)− y0 and f (b)− y0. Moreover, the function
g(x) = f (x)− y0 is continuous on [a, b] and g(a) < g(b) if
and only if f (a) < f (b). Hence it is no loss to assume that
y0 = 0.

Now the theorem is reduced to the following special case.



Theorem If a function f : [a, b] → R is continuous and
f (a) < 0 < f (b), then f (x0) = 0 for some x0 ∈ (a, b).

Proof: Let E = {x ∈ [a, b] | f (x) > 0}. The set E is
nonempty (as b ∈ E ) and bounded (as E ⊂ [a, b]).
Therefore x0 = inf E exists. Observe that x0 ∈ [a, b]
(x0 ≤ b as b ∈ E ; x0 ≥ a as a is a lower bound of E ).
To complete the proof, we need the following lemma.

Lemma If a function f is continuous at a point c and
f (c) 6= 0, then f maintains its sign in a sufficiently small
neighborhood of c.

The lemma implies that f (x0) = 0. Indeed, if f (x0) 6= 0 then
for some δ > 0 the function f maintains its sign in the interval
(x0 − δ, x0 + δ)∩ [a, b]. In the case f (x0) > 0, we obtain that
x0 > a and x0 is not a lower bound of E . In the case
f (x0) < 0, we obtain that x0 < b and x0 is not the greatest
lower bound of E . Either way we arrive at a contradiction.



Lemma If a function f is continuous at a point c and
f (c) 6= 0, then f maintains its sign in a sufficiently small
neighborhood of c.

Proof of lemma: Since f is continuous at c and |f (c)| > 0,
there exists δ > 0 such that |f (x)− f (c)| < |f (c)| whenever
|x − c| < δ. The inequality |f (x)− f (c)| < |f (c)| implies
that the number f (x) has the same sign as f (c).

Corollary If a real-valued function f is continuous on a closed
bounded interval [a, b], then the image f ([a, b]) is also a
closed bounded interval.

Proof: By the Extreme Value Theorem, there exist points
xmin, xmax ∈ [a, b] such that f (xmin) ≤ f (x) ≤ f (xmax) for all
x ∈ [a, b]. Let I0 denote the closed interval with endpoints
xmin and xmax. Let J denote the closed interval with endpoints
f (xmin) and f (xmax). We have that f ([a, b]) ⊂ J . The
Intermediate Value Theorem implies that f (I0) = J . Since
I0 ⊂ [a, b], we obtain that f ([a, b]) = J .


