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Lecture 10:
Continuity.
Properties of continuous functions.



Continuity

Definition. Given a set E C R, a function f : E - R, and a
point ¢ € E, the function f is continuous at c if for any

e > 0 there exists § = d(¢) > 0 such that |x —¢| < § and

x € E imply |[f(x) —f(c)|] <e.

We say that the function f is continuous on a set Ey C E if

f is continuous at every point ¢ € Ey. The function f is
continuous if it is continuous on the entire domain E.

Remarks. e In the case E = (a, b), the function f is

continuous at a point ¢ € E if and only if f(c) = lim f(x).
X—C

e In the case E = [a, b], the function f is continuous at a

point ¢ € (a,b) if f(c) = lim f(x). Itis continuous at a if

X—C
f(a) = “m+ f(x) and continuous at b if f(b) = lim f(x).
X—a

x—b—



Theorem A function f : E — R is continuous at
a point ¢ € E if and only if for any sequence {x,}
of elements of E, x, — ¢ as n — oo implies
f(xn) — f(c) as n — 0.

Theorem Suppose that functions f,g: E — R
are both continuous at a point ¢ € E. Then the
functions f +g, f — g, and fg are also continuous
at ¢. If, additionally, g(c) # 0, then the function
f /g is continuous at ¢ as well.



Bounded functions

Definition. A function f : E — R is bounded on a subset
Eq C E if there exists C > 0 such that |f(x)| < C for all
x € Ey. In the case Ey = E, we say that f is bounded.

The function f is bounded above on E; if there exists C € R
such that f(x) < C for all x € Ey. It is bounded below on
Ey if there exists C € R such that f(x) > C for all x € Ey.

Equivalently, f is bounded on Ej if the image f(Ep) is a
bounded subset of R. Likewise, the function f is bounded
above on E if the image f(Ep) is bounded above. It is
bounded below on Eq if f(Ep) is bounded below.

Example. h:R — R, h(0) =0, h(x)=1/x for x #0.
The function h is unbounded. At the same time, it is

bounded on [1,00) and on (—o0, —1]. It is bounded below
on (0,00) and bounded above on (—o0, 0).



Theorem If | = [a, b] is a closed, bounded
interval of the real line, then any continuous
function f : | — R is bounded.

Proof: Assume that a function f : / — R is unbounded.
Then for every n € N there exists a point x, € | such that
|f(xn)| > n. We obtain a sequence {x,} of elements of / such
that the sequence {f(x,)} diverges to infinity.

Since the interval / is bounded, the sequence {x,} has a

convergent subsequence {x,, } (due to the Bolzano-

Weierstrass Theorem). Let ¢ = klim Xn,. Then c € [a, b]
—00

(due to the Comparison Theorem). Since the sequence
{f(xn,)} is a subsequence of {f(x,)}, it diverges to infinity.

In particular, it does not converge to f(c). It follows that the
function f is discontinuous at c.

Thus any continuous function on [a, b] has to be bounded.



Discontinuities

A function f : E — R is discontinuous at a point c € E if
it is not continuous at ¢. There are various kinds of
discontinuities including the following ones.

e The function f has a jump discontinuity at a point ¢ if
both one-sided limits at ¢ exist, but they are not equal:

xl—i>nc1— f(X) 7& xl—i>nc1+ f(X)

e The function f has a removable discontinuity at a point
c if the limit at ¢ exists, but it is different from the value at c¢:

)I(ian f(x) # f(c).

e |f the function f is continuous at a point ¢, then it is
locally bounded at ¢, which means that f is bounded on the
set (¢ —0d,c+d)NE provided § > 0 is small enough. Hence
any function not locally bounded at c is discontinuous at c.



Examples

e Constant function: f(x) =a forall x € R and
some a € R.

Since lim f(x) = a for all ¢ € R, the function f is

i X—C
continuous.

e Identity function: f(x) =x, x € R.

Since lim f(x) = ¢ for all ¢ € R, the function is continuous.
X—C

1 if x>0,
0 if x<0.

(x) =1, the function has a

e Step function: f(x) = {

Since lim f(x) =0 and lim f
x—0— x—0+
jump discontinuity at 0. It is continuous on R\ {0}.



Examples
1
e f(0)=0 and f(x)=— for x #0.
X

Since lim f(x) =1/c for all ¢ # 0, the function f is

X—C
continuous on R\ {0}. It is discontinuous at 0 as it is not

locally bounded at 0.

e f(0)=0 and f(x):sini for x # 0.

Since IirgJr f(x) does not exist, the function is discontinuous
X—r

at 0. Notice that it is neither jump nor removable
discontinuity, and the function f is bounded.

1
e f(0)=0 and f(x):xsin; for x # 0.

Since Iim0 f(x) = 0, the function is continuous at 0.
X—



Examples

1 if xeQ,

e Dirichlet function: f(x) = { 0 if xeR\Q

Since lim f(x) never exists, the function has no points of
X—C

continuity.

e Riemann function:

F(x) = 1/q if x=p/q, areduced fraction,
“1 0 if xeR\Q.

Since lim f(x) =0 for all ¢ € R, the function f is

X—C
continuous at irrational points and discontinuous at rational

points. Moreover, all discontinuities are removable.



Extreme Value Theorem

Theorem |If | =[a, b] is a closed, bounded interval of the
real line, then any continuous function f : / — R attains its
extreme values (maximum and minimum) on /. To be precise,
there exist points Xmin, Xmax € | such that

f(Xmin) S f(X) S f(Xmax) for all x € [.

Remark 1. The theorem may not hold if the interval / is not
closed. Counterexample: f(x) = x, x € (0,1). Neither
maximum nor minimum is attained.

Remark 2. The theorem may not hold if the interval / is not
bounded. Counterexample: f(x) =1/(1+ x?), x € [0, 0).
The maximal value is attained at 0 but the minimal value is
not attained.



Extreme Value Theorem

Proof of the theorem: Since the function f is continuous, it is

bounded on /. Hence m = im; f(x) and M =supf(x) are
x€ xel

well-defined numbers. In different notation: m = inf f(/),
M =sup f(l). Clearly, m < f(x) < M forall x € I.

For any n € N the number M — % is not an upper bound of

the set f(/) while m+ 1 is not a lower bound of f(/). Hence
we can find points x,, y, € | such that f(x,) > M — 1 and
f(ys) < m+ X. By construction, f(x,) = M and

f(yn) = m as n — oco. The Bolzano-Weierstrass Theorem
implies that the sequences {x,} and {y,} have convergent
subsequences (or, in other words, they have limit points).

Let ¢ be a limit point of {x,} and d be a limit point of {y,}.
Notice that ¢, d € I. The continuity of f implies that f(c) is
a limit point of {f(x,)} and f(d) is a limit point of {f(y,)}.
We conclude that f(c) = M and f(d) = m.



Intermediate Value Theorem

Theorem If a function f : [a, b] — R is continuous then any
number yo that lies between f(a) and f(b) is a value of f, i.e.,
yo = f(xo) for some xo € [a, b.

Proof: In the case f(a) = f(b), the theorem is trivial. In
the case f(a) > f(b), we notice that the function —f is
continuous on [a, b], —f(a) < —f(b), and —yy lies between
—f(a) and —f(b). Hence we can assume without loss of
generality that f(a) < f(b).

Further, if a number yq lies between f(a) and f(b), then O lies
between f(a) — yo and f(b) — yo. Moreover, the function
g(x) = f(x) — yo is continuous on [a, b] and g(a) < g(b) if
and only if f(a) < f(b). Hence it is no loss to assume that
¥o = 0.

Now the theorem is reduced to the following special case.



Theorem If a function f : [a, b] — R is continuous and
f(a) <0< f(b), then f(xo) =0 for some xo € (a, b).

Proof: Let E = {x € [a,b]|f(x)>0}. Theset E is
nonempty (as b € E) and bounded (as E C |[a, b]).
Therefore xo = inf E exists. Observe that xg € [a, b]
(xo < bas beE; x> a as a is a lower bound of E).
To complete the proof, we need the following lemma.

Lemma If a function f is continuous at a point ¢ and
f(c) #0, then f maintains its sign in a sufficiently small
neighborhood of c.

The lemma implies that f(x) = 0. Indeed, if f(xo) # 0 then
for some 9 > 0 the function f maintains its sign in the interval
(xo — 9, x0+0)N[a, b]. In the case f(x9) > 0, we obtain that
Xp > a and xg is not a lower bound of E. In the case

f(x0) < 0, we obtain that xo < b and X is not the greatest
lower bound of E. Either way we arrive at a contradiction.



Lemma If a function f is continuous at a point ¢ and
f(c) # 0, then f maintains its sign in a sufficiently small
neighborhood of c.

Proof of lemma: Since f is continuous at ¢ and |f(c)| > 0,
there exists § > 0 such that |f(x) — f(c)| < |f(c)| whenever
|x —c| < 0. Theinequality |f(x)— f(c)| < |f(c)| implies
that the number f(x) has the same sign as f(c¢). n

Corollary If a real-valued function f is continuous on a closed
bounded interval [a, b], then the image f([a, b]) is also a
closed bounded interval.

Proof: By the Extreme Value Theorem, there exist points
Xemins Xmax € [a, b] such that f(xmin) < f(x) < f(Xmax) for all
x € [a, b]. Let Iy denote the closed interval with endpoints
Xmin and Xmax. Let J denote the closed interval with endpoints
f(Xmin) and f(xmax). We have that f([a, b]) C J. The
Intermediate Value Theorem implies that () = J. Since

lo C [a, b], we obtain that f([a, b]) = J.



