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Advanced Calculus I

Lecture 11:

More on continuous functions.



Continuity

Definition. Given a set E ⊂ R, a function f : E → R, and a
point c ∈ E , the function f is continuous at c if for any
ε > 0 there exists δ = δ(ε) > 0 such that |x − c| < δ and
x ∈ E imply |f (x)− f (c)| < ε.

We say that the function f is continuous on a set E0 ⊂ E if
f is continuous at every point c ∈ E0. The function f is
continuous if it is continuous on the entire domain E .

Theorem A function f : E → R is continuous at a point
c ∈ E if and only if for any sequence {xn} of elements of E ,
xn → c as n → ∞ implies f (xn) → f (c) as n → ∞.

Basic examples:

• Constant function: f (x) = a for all x ∈ R and some
a ∈ R.
• Identity function: f (x) = x , x ∈ R.



Theorem Suppose that functions f , g : E → R are both
continuous at a point c ∈ E . Then the functions f + g ,
f − g , and fg are also continuous at c. If, additionally,
g(c) 6= 0, then the function f /g is continuous at c as well.

Examples of continuous functions:

• Power function: f (x) = xn, x ∈ R, where n ∈ N.

Since the identity function is continuous and xk+1 = xkx for
all k ∈ N, it follows by induction on n that f is continuous.

• Polynomial: f (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0.

Since constant functions and power functions are continuous,
so are the functions fk(x) = akx

k , x ∈ R. Then f is
continuous as a finite sum of continuous functions.

• Rational function: f (x) = p(x)/q(x), where p and q are
polynomials.

Since p and q are continuous, the function f is continuous on
its entire domain {x ∈ R | q(x) 6= 0}.



Extreme values and intermediate values

Theorem If I = [a, b] is a closed, bounded
interval of the real line, then any continuous

function f : I → R is bounded and attains its
extreme values (maximum and minimum) on I .

Theorem If a function f : [a, b] → R is

continuous then any number y0 that lies between
f (a) and f (b) is a value of f , i.e., y0 = f (x0) for
some x0 ∈ [a, b].

Corollary If a real-valued function f is continuous
on a closed bounded interval [a, b], then the image
f ([a, b]) is also a closed bounded interval.



Theorem Any polynomial of odd degree has at
least one real root.

Proof: Let p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0 be a
polynomial of positive degree n. Note that an 6= 0. For any
x 6= 0 we have

p(x)

anxn
= 1 +

an−1

anx
+ · · ·+

a1

anxn−1
+

a0

anxn
,

which converges to 1 as x → ±∞. As a consequence, there
exists C > 0 such that p(x)/(anx

n) ≥ 1/2 if |x | ≥ C . In
particular, the numbers p(x) and anx

n are of the same sign if
|x | ≥ C . In the case n is odd, this implies that one of the
numbers p(C ) and p(−C ) is positive while the other is
negative. By the Intermediate Value Theorem, we have
p(x) = 0 for some x ∈ [−C ,C ].



Given a function f : (a, b) → R and a point c ∈ (a, b), let f1
denote the restriction of f to the interval (a, c] and f2 denote
the restriction of f to [c, b).

Theorem The function f is continuous if and only if both
restrictions f1 and f2 are continuous.

Proof: For any x ∈ (a, c), the continuity of f at x is
equivalent to the continuity of f1 at x . Likewise, the
continuity of f at a point y ∈ (c, b) is equivalent to the
continuity of f2 at y . The function f is continuous at c if
f (x) → f (c) as x → c. The restriction f1 is continuous at c
if f (x) → f (c) as x → c−. The restriction f2 is continuous
at c if f (x) → f (c) as x → c+. Therefore f is continuous
at c if and only if both f1 and f2 are continuous at c.

Example. The function f (x) = |x | is continuous on R.

Indeed, f concides with the function g(x) = x on [0,∞) and
with the function h(x) = −x on (−∞, 0].



Continuity of the composition

Let f : E1 → R and g : E2 → R be two functions. If
f (E1) ⊂ E2, then the composition (g ◦ f )(x) = g(f (x)) is a
well defined function on E1.

Theorem If f is continuous at a point c ∈ E1 and g is
continuous at f (c), then g ◦ f is continuous at c.

Proof: Let us use the sequential characterization of
continuity. Consider an arbitrary sequence {xn} ⊂ E1

converging to c. We have to show that

(g ◦ f )(xn) → (g ◦ f )(c) as n → ∞.

Since the function f is continuous at c, we obtain that
f (xn) → f (c) as n → ∞. Moreover, all elements of the
sequence {f (xn)} belong to the set E2. Since the function g

is continuous at f (c), we obtain that g(f (xn)) → g(f (c)) as
n → ∞.



Examples of continuous functions

• If a function f : E → R is continuous at a point

c ∈ E , then a function g(x) = |f (x)|, x ∈ E , is
also continuous at c .

Indeed, the function g is the composition of f with the
continuous function h(x) = |x |.

• If functions f , g : E → R are continuous at a

point c ∈ E , then functions max(f , g) and
min(f , g) are also continuous at c .

Indeed, 2max(f (x), g(x)) = f (x) + g(x) + |f (x)− g(x)| and
2min(f (x), g(x)) = f (x)+ g(x)−|f (x)− g(x)| for all x ∈ E .



Trigonometric functions

sin θ = y

cos θ = x

tan θ = y/x

Theorem 0 ≤ sin θ ≤ θ ≤ tan θ for θ ∈ [0, π/2).

sin θ = |segment AB |

θ = |arc CB |
tan θ = |segment CD|



Examples of continuous functions

• f (x) = sin x , x ∈ R.

We know that 0 ≤ sin θ ≤ θ for θ ∈ [0, π/2). Since
sin(−θ) = − sin θ, we get | sin θ| ≤ |θ| if |θ| < π/2. In the
case |θ| ≥ π/2, this estimate holds too as | sin θ| ≤ 1 < π/2.
Now, using the trigonometric formula

sin x − sin c = 2 sin x−c

2
cos x+c

2
,

we obtain | sin x − sin c| ≤ 2 | sin x−c

2
| | cos x+c

2
| ≤ 2 | x−c

2
|

= |x − c|. It follows that sin x → sin c as x → c for every
c ∈ R. That is, the function sin x is continuous.

• f (x) = cos x , x ∈ R.

Since cos x = sin(x + π/2) for all x ∈ R, the function f is a
composition of two continuous functions, g(x) = x + π/2 and
h(x) = sin x . Therefore it is continuous as well.



Examples of continuous functions

• f (x) = tan x .

Since f (x) =
sin x

cos x
, the function f is continuous on its entire

domain R \ {x ∈ R | cos x = 0} = R \ {π/2 + πk | k ∈ Z}.

• f (0) = 1 and f (x) =
sin x

x
for x 6= 0.

Since sin x and the identity functions are continuous, it
follows that f is continuous on R \ {0}. Further, we know
that 0 ≤ sin x ≤ x ≤ tan x for 0 ≤ x < π/2. Therefore

cos x ≤
sin x

x
≤ 1. Since cos 0 = 1, the Squeeze Theorem

implies that f (x) → 1 as x → 0+. The left-hand limit at 0
is the same as f (−x) = f (x) for all x ∈ R. Thus the
function f is continuous at 0 as well.



Monotone functions

Let f : E → R be a function defined on a set E ⊂ R.

Definition. The function f is called increasing if, for any
x , y ∈ E , x < y implies f (x) ≤ f (y ). It is called strictly

increasing if x < y implies f (x) < f (y ). Likewise, f is
decreasing if x < y implies f (x) ≥ f (y ) and strictly

decreasing x < y implies f (x) > f (y ) for all x , y ∈ E .

Increasing and decreasing functions are called monotone.
Strictly incresing and strictly decreasing functions are called
strictly monotone.

Theorem 1 Any monotone function defined on an open
interval can have only jump discontinuities.

Theorem 2 A monotone function f defined on an interval I
is continuous if and only if the image f (I ) is also an interval.

Theorem 3 A continuous function defined on a closed
interval is one-to-one if and only if it is strictly monotone.



Continuity of the inverse function

Suppose f : E → R is a strictly monotone function defined on
a set E ⊂ R. Then f is one-to-one on E so that the inverse

function f −1 is a well defined function on f (E ).

Theorem If the domain E of a strictly monotone function f

is a closed interval and f is continuous on E , then the image
f (E ) is also a closed interval, and the inverse function f −1 is
strictly monotone and continuous on f (E ).

Proof: Since f is continuous on the closed interval E , it
follows from the Extreme Value and Intermediate Value
theorems that f (E ) is also a closed interval. The inverse
function f −1 is strictly monotone since f is strictly monotone.
By construction, f −1 maps the interval f (E ) onto the interval
E , which implies that f −1 is continuous.



Examples

• Power function f (x) = xn, x ∈ R, where
n ∈ N.

The function f is continuous on R. It is strictly increasing on
the interval [0,∞) and f ([0,∞)) = [0,∞). In the case n is
odd, the function f is strictly increasing on R and f (R) = R.
We conclude that the inverse function f −1(x) = x1/n is a
continuous function on [0,∞) if n is even and a continuous
function on R if n is odd.

• f (x) = xn, x ∈ R \ {0}, where n ∈ Z, n < 0.

The function f is strictly decreasing on (0,∞). It is
continuous on (0,∞) and maps this interval onto itself.
Therefore the inverse function f −1(x) = x1/n is a continuous
function on (0,∞).


