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Lecture 12:
Uniform continuity.
Exponential functions.



Uniform continuity

Definition. A function f : E — R defined on a set
E C R is called uniformly continuous on E if for
every € > 0 there exists § = d(¢) > 0 such that

Ix —y| <6 and x,y € E imply |f(x) —f(y)| <e.

Recall that the function f is continuous at a point
y € E if for every € > 0 there exists
d =9d(y,e) > 0 such that |x —y| <9 and x € E

imply |f(x) — f(y)| <e.

Therefore the uniform continuity of f is a stronger
property than the continuity of f on E.



Examples

e Constant function f(x) = a is uniformly
continuous on R.

Indeed, |f(x) — f(y)|=0<c¢e forany ¢ >0 and x,y € R.

e Identity function f(x) = x is uniformly
continuous on R.

Since f(x) — f(y) =x —y, we have |f(x) —f(y)| <e
whenever |x —y| < e.

e The sine function f(x) = sinx is uniformly
continuous on R.

It was shown in the previous lecture that
|sinx —siny| < |x —y| forall x,y € R. Therefore
|f(x) — f(y)| < e whenever |x —y| <e.



Lipschitz functions

Definition. A function f : E — R is called a
Lipschitz function if there exists a constant L > 0
such that |f(x) — f(y)| < L|x —y| forall x,y € E.

e Any Lipschitz function is uniformly continuous.

Using notation of the definition, let 6(¢) =¢/L, ¢ > 0.
Then |x —y| < d(e) implies
[F() = f)l < Lix—y[ < Li(e) = €

for all x,y € E.



e The function f(x) = /x is uniformly
continuous on [0,00) but not Lipschitz.

Forany n€ N, |f(1/n) — f(0)| = \/1/n=+/n|1/n—0|.

It follows that f is not L|psch|tz

Given € >0, let 6 = 2. Suppose |x — y| < 4, where

x,y > 0. To estimate |f(x)— f(y)|, we consider two cases.
In the case x,y € [0,6), we use the fact that f is strictly
increasing.  Then |f(x) — f(y)| < f(6) — f(0) = V6 = ¢.
Otherwise, when x ¢ [0,60) or y ¢ [0,0), we have
max(x, y) > 6. Then

Vx =yl =

x =yl ﬁz\/g:a

‘f+f‘ Jmadxy) Vs

Thus f is uniformly continuous.



e The function f(x) = x? is not uniformly
continuous on R.

Let € =2 and choose an arbitrary 6 > 0. Let ns be a natural
number such that 1/ns < §. Further, let xs = ns +1/ns; and
ys = ns. Then |xs — ys| = 1/ns < § while

f(X(;) — f(y(;) = (n5+ 1/!75)2 — n§ =2+ 1/n§ > €.

We conclude that f is not uniformly continuous.

e The function f(x) = x? is Lipschitz (and hence
uniformly continuous) on any bounded interval
[a, b].
For any x,y € [a, b] we obtain
X =y =1(x +y)(x=y)l =[x+ ylIx =y
< (X[ +IyD) Ix =y < 2max(]a], [b]) [x — y|.



Theorem Any function continuous on a closed bounded
interval [a, b] is also uniformly continuous on [a, b].

Proof: Assume that a function f : [a, b] — R is not
uniformly continuous on [a, b]. We have to show that f is not
continuous on [a, b]. By assumption, there exists € > 0 such
that for any 0 > 0 we can find two points x,y € [a, b]
satisfying [x —y| < d and |f(x) — f(y)| > €. In particular,
for any n € N there exist points x,,y, € [a, b] such that

|xn — ¥n| < 1/n while |f(x,) — f(ya)| > e.

By construction, {x,} is a bounded sequence. According to
the Bolzano-Weierstrass theorem, there is a subsequence {x,, }
converging to a limit c. Moreover, ¢ belongs to [a, b] as
{x»} C[a,b]. Since x, —1/n <y, <x,+1/n for all

n € N, the subsequence {y,, } also converges to c. However
the inequalities |f(xn,) — (¥, )| > € imply that at least one
of the sequences {f(x,,)} and {f(y,,)} is not converging to
f(c). It follows that the function f is not continuous at c.



Theorem Suppose that a function f: E — R is
uniformly continuous on E. Then it maps Cauchy
sequences to Cauchy sequences, that is, for any
Cauchy sequence {x,} C E the sequence {f(x,)} is
also Cauchy.

Proof: Let {x,} C E be a Cauchy sequence. Since the
function f is uniformly continuous on E, for every ¢ > 0 there
exists 0 = d(¢) such that [x —y| < d and x,y € E imply
|f(x) — f(y)| <e. Since {x,} is a Cauchy sequence, there
exists N = N(0) € N such that |x, — x| < J for all

n,m> N. Then |f(x,) — f(xn)| <& forall n,m>N.

We conclude that {f(x,)} is a Cauchy sequence.



Dense subsets

Definition. Given a set E C R and its subset Eq C E, we say
that Ep is dense in E if for any point x € E and any ¢ > 0
the interval (x —e,x 4 ¢) contains an element of Ej.

Examples. e An open bounded interval (a, b) is dense in the
closed interval [a, b].
e The set QQ of rational numbers is dense in R.

Theorem A subset £y of a set E C R is dense in E if and
only if for any ¢ € E there exists a sequence {x,} C Ey
converging to c.

Proof: Suppose that for any point ¢ € E there is a sequence
{x,} C Eo converging to c. Then any e-neighborhood

(c —e,c+¢€) of c contains an element of that sequence.
Conversely, suppose that Eqy is dense in E. Then, given

c € E, forany n &€ N there is a point x, € (c—%, C—l—%) N Ep.
Clearly, x, — ¢ as n — oc.



Continuous extension

Theorem Suppose that a subset Ey of a set

E C R isdense in E. Then any uniformly
continuous function f : Eg — R can be extended to
a continuous function on E. Moreover, the
extension is unique and uniformly continuous.

Proof: First let us show that a continuous extension of the
function f to the set E is unique (assuming it exists).

Suppose g, h: E — R are two continuous extensions of f.
Since the set Eq is dense in E, for any ¢ € E there is a
sequence {x,} C Ey converging to c¢. Since g and h are
continuous at ¢, we get g(x,) — g(c) and h(x,) — h(c) as
n — oco. However g(x,) = h(x,) = f(x,) for all n € N.
Hence g(c) = h(c).



Proof (continued): Given ¢ € E, let {x,} be a sequence of
elements of Eq converging to c. The sequence {x,} is
Cauchy. Since f is uniformly continuous, it follows that the
sequence {f(x,)} is also Cauchy. Hence it converges to a
limit L. We claim that the limit L depends only on ¢ and does
not depend on the choice of the sequence {x,}. Indeed, let
{X,} C Eo be another sequence converging to c. Then a
sequence Xy, X1, Xo, X», ... also converges to c. Consequently,
the sequence f(x1),f(%1), f(x2), f(X2),... is convergent.

The limit is L since the subsequence {f(x,)} converges to L.
Another subsequence is {f(X,)}, hence it converges to L as
well. Now we set F(c) = L, which defines a function
F:E—R.

The continuity of the function f implies that F(c) = f(c) for
c € Ey, i.e., Fis an extension of f.



Proof (continued): It remains to show that the extension F is
uniformly continuous.

Given ¢ > 0, let £9 =¢/2. Since f is uniformly continuous,
there is 6 > 0 such that |x — y| < implies

|f(x) — f(y)| <eo forall x,y € Eg. Forany c,d € E we
can find sequences {x,} and {y,} of elements of Ey such that
X, — ¢ and y, — d as n — oo. By construction of F, we
have f(x,) — F(c) and f(y,) — F(d) as n — oc.

If |c—d| <d, then |x, —y,| <0 for all sufficiently large n.
Consequently, |f(x,) — f(yn)| < eo for all sufficiently large n,
which implies |F(c) — F(d)| < e <e.

Thus F is uniformly continuous.



Exponential functions

Theorem For any a > 0 there exists a unique
function F,: R — R satisfying the following
conditions:

(i) Fo(1) = a,

(il) Fa(x +y) = Fa(x)Fi(y) for all x,y € R,

(iii) F, is continuous at 0.

Remark. The function is denoted F,(x) = a* and
called the exponential function with base a.



Sketch of the proof (existence)

Let &% =1, a' =4, and a™! = 3"a forall n € N.
Further, let a=" =1/a" for all n€ N.

Lemma 1 a™™" =a™a" and a™ = (a™)" for all m,n € Z.

Lemma 2 If my,my € Z and ny, n, € N satisfy

my/ny = my/n,, then Yam = %/am.

For any r € Q let a" = v/a™, where me€ Z and n €N are
chosen so that r = m/n.

Lemma 3 a’"* =2a"a° and a” = (a")° forall r,s € Q.
Lemma 4 The function f(r) =a", r € Q, is monotone.
Lemma 5 a*/" — 1 as n — oo.

Lemma 6 The function f(r) =a", r € Q, is uniformly
continuous on [by, b,] N Q for any bounded interval [by, bs].



