
MATH 409

Advanced Calculus I

Lecture 13:
Review for Test 1.



Topics for Test 1

Part I: Axiomatic model of the real numbers

• Axioms of an ordered field

• Completeness axiom

• Archimedean principle

• Principle of mathematical induction

• Binomial formula

• Countable and uncountable sets

Wade’s book: 1.1–1.6, Appendix A



Topics for Test 1

Part II: Limits and continuity

• Limits of sequences
• Limit theorems for sequences

• Monotone sequences
• Bolzano-Weierstrass theorem

• Cauchy sequences
• Limits of functions

• Limit theorems for functions
• Continuity of functions
• Extreme value and intermediate value theorems

• Uniform continuity

Wade’s book: 2.1–2.5, 3.1–3.4



Axioms of real numbers

Definition. The set R of real numbers is a set
satisfying the following postulates:

Postulate 1. R is a field.

Postulate 2. There is a strict linear order < on R

that makes it into an ordered field.

Postulate 3 (Completeness Axiom).
If a nonempty subset E ⊂ R is bounded above,
then E has a supremum.



Theorems to know

Theorem (Archimedean Principle) For any real number
ε > 0 there exists a natural number n such that nε > 1.

Theorem (Principle of mathematical induction) Let P(n)
be an assertion depending on a natural variable n. Suppose
that
• P(1) holds,
• whenever P(k) holds, so does P(k + 1).

Then P(n) holds for all n ∈ N.

Theorem If A1,A2, . . . are finite or countable sets, then the
union A1 ∪ A2 ∪ . . . is also finite or countable. As a
consequence, the sets Z, Q, and N× N are countable.

Theorem The set R is uncountable.



Limit theorems for sequences

Theorem If lim
n→∞

xn = lim
n→∞

yn = a and

xn ≤ wn ≤ yn for all sufficiently large n, then

lim
n→∞

wn = a.

Theorem If lim
n→∞

xn = a, lim
n→∞

yn = b, and

xn ≤ yn for all sufficiently large n, then a ≤ b.

Theorem If lim
n→∞

xn = a and lim
n→∞

yn = b,

then lim
n→∞

(xn+ yn) = a+ b, lim
n→∞

(xn− yn) = a− b,

and lim
n→∞

xnyn = ab. If, additionally, b 6= 0 and

yn 6= 0 for all n ∈ N, then lim
n→∞

xn/yn = a/b.



Theorem Any monotone sequence converges to a

limit if bounded, and diverges to infinity otherwise.

Theorem (Bolzano-Weierstrass) Every bounded
sequence of real numbers has a convergent
subsequence.

Theorem Any Cauchy sequence is convergent.



Theorem A function f : E → R is continuous at
a point c ∈ E if and only if for any sequence {xn}
of elements of E , xn → c as n → ∞ implies
f (xn) → f (c) as n → ∞.

Theorem Suppose that functions f , g : E → R

are both continuous at a point c ∈ E . Then the

functions f + g , f − g , and fg are also continuous
at c . If, additionally, g(c) 6= 0, then the function

f /g is continuous at c as well.



Extreme Value Theorem If I = [a, b] is a
closed, bounded interval of the real line, then any

continuous function f : I → R is bounded and
attains its extreme values (maximum and minimum)

on I .

Intermediate Value Theorem If a function
f : [a, b] → R is continuous then any number y0
that lies between f (a) and f (b) is a value of f , i.e.,
y0 = f (x0) for some x0 ∈ [a, b].

Theorem Any function continuous on a closed

bounded interval [a, b] is also uniformly continuous
on [a, b].



Sample problems for Test 1

Problem 1 (15 pts.) Prove that for any n ∈ N,

13 + 23 + 33 + · · ·+ n3 =
n2(n + 1)2

4
.

Problem 2 (30 pts.) Let {Fn} be the sequence

of Fibonacci numbers: F1 = F2 = 1 and
Fn = Fn−1 + Fn−2 for n ≥ 2.

(i) Show that the sequence {F2k/F2k−1}k∈N is

increasing while the sequence {F2k+1/F2k}k∈N is
decreasing.

(ii) Prove that lim
n→∞

Fn+1

Fn
=

√
5 + 1

2
.



Sample problems for Test 1

Problem 3 (25 pts.) Prove the Extreme Value

Theorem: if f : [a, b] → R is a continuous function
on a closed bounded interval [a, b], then f is

bounded and attains its extreme values (maximum
and minimum) on [a, b].



Sample problems for Test 1

Problem 4 (20 pts.) Consider a function

f : R → R defined by f (−1) = f (0) = f (1) = 0

and f (x) =
x − 1

x2 − 1
sin

1

x
for x ∈ R \ {−1, 0, 1}.

(i) Determine all points at which the function f is
continuous.

(ii) Is the function f uniformly continuous on the
interval (0, 1)? Is it uniformly continuous on the
interval (1, 2)? Explain.



Sample problems for Test 1

Bonus Problem 5 (15 pts.) Given a set X , let
P(X ) denote the set of all subsets of X . Prove

that P(X ) is not of the same cardinality as X .



Problem 1. Prove that for any n ∈ N,

13 + 23 + 33 + · · ·+ n3 =
n2(n + 1)2

4
.

Proof: The proof is by induction on n. First we consider the
case n = 1. In this case the formula reduces to 13 = 12·22

4
,

which is a true equality. Now assume that the formula holds
for n = k, that is,

13 + 23 + · · ·+ k3 =
k2(k + 1)2

4
.

Adding (k + 1)3 to both sides of this equality, we get

13 + 23 + · · ·+ k3 + (k + 1)3 =
k2(k + 1)2

4
+ (k + 1)3

= (k + 1)2
(

k
2

4
+ (k + 1)

)

= (k + 1)2 k
2+4k+4

4
= (k+1)2(k+2)2

4
,

which means that the formula holds for n = k + 1 as well.
By induction, the formula holds for any natural number n.



Remark. We have proved that

13 + 23 + 33 + · · ·+ n3 =
n2(n + 1)2

4
.

Also, it is known that

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

It follows that

13 + 23 + 33 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)2

for all n ∈ N.



Problem 2. Let {Fn} be the sequence of Fibonacci
numbers: F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

(i) Show that the sequence {F2k/F2k−1}k∈N is increasing
while the sequence {F2k+1/F2k}k∈N is decreasing.

Let xn = Fn+1/Fn, n ∈ N. Then

xn+1 =
Fn+2

Fn+1
=

Fn + Fn+1

Fn+1
= 1 +

Fn

Fn+1
= 1 +

1

xn

for all n ∈ N. In particular, x1 = 1, x2 = 1 + 1/x1 = 2,
x3 = 1 + 1/x2 = 3/2, x4 = 1 + 1/x3 = 5/3. Notice that

x1 < x3 < x4 < x2.

The function f (x) = 1 + 1/x is strictly decreasing on the
interval I = (0,∞) and maps it to itself. Therefore its
second iteration g = f ◦ f is strictly increasing on I and
g(I ) ⊂ I . We have xn+2 = f (xn+1) = f (f (xn)) = g(xn) for
all n ∈ N. Now it follows by induction on k that

x2k−1 < x2k+1 < x2k+2 < x2k for all k ∈ N.



Problem 2. Let {Fn} be the sequence of Fibonacci
numbers: F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

(ii) Prove that lim
n→∞

Fn+1

Fn

=

√
5 + 1

2
.

We already know that the numbers xn = Fn+1/Fn satisfy
inequalities

x2k−1 < x2k+1 < x2k+2 < x2k

for all k ∈ N. It follows that the sequence {x2k−1} is strictly
increasing, the sequence {x2k} is strictly decreasing, and both
sequences are bounded. Therefore these sequences are
converging to some positive limits: x2k−1 → c1 and x2k → c2
as k → ∞. To prove that lim

n→∞

Fn+1/Fn = (
√
5 + 1)/2, it is

enough to show that c1 = c2 = (
√
5 + 1)/2.



For any x > 0 we obtain

g(x) = f (f (x)) = f

(

1 +
1

x

)

= 1 +
1

1 + 1
x

= 1 +
1

x+1
x

= 1 +
x

x + 1
=

2x + 1

x + 1
.

It follows that g(x2k−1) → g(c1) and g(x2k) → g(c2) as
k → ∞. However g(x2k−1) = x2k+1 and g(x2k) = x2k+2,
which implies that g(c1) = c1 and g(c2) = c2. Since

x − g(x) =
x(x + 1)

x + 1
− 2x + 1

x + 1
=

x2 − x − 1

x + 1
,

c1 and c2 are roots of the equation x2 − x − 1 = 0. This
equation has two roots, (1−

√
5)/2 and (

√
5+ 1)/2. One of

the roots is negative. Thus both c1 and c2 are equal to the
other root, (

√
5 + 1)/2.



Problem 3. Prove the Extreme Value Theorem: if
f : [a, b] → R is a continuous function on a closed bounded
interval [a, b], then f is bounded and attains its extreme
values (maximum and minimum) on [a, b].

Proof: First let us prove that the function f is bounded.
Assume the contrary. Then for every n ∈ N there exists a
point xn ∈ [a, b] such that |f (xn)| > n. We obtain a
sequence {xn} of elements of [a, b] such that the sequence
{f (xn)} diverges to infinity. Since the sequence {xn} is
bounded, it has a convergent subsequence {xnk} due to the
Bolzano-Weierstrass Theorem. Let c be the limit of xnk as
k → ∞. Since a ≤ xnk ≤ b for all k, the Comparison
Theorem implies that a ≤ c ≤ b, i.e., c ∈ [a, b]. Then the
function f is continuous at c. As a consequence,
f (xnk ) → f (c) as k → ∞. However the sequence {f (xnk )} is
a subsequence of {f (xn)} and hence diverges to infinity. This
contradiction shows that the assumption was wrong: the
function f is bounded.



Since the function f is bounded, the image f ([a, b]) is a
bounded subset of R. Let m = inf f ([a, b]),
M = sup f ([a, b]). For any n ∈ N the number M − 1

n
is not

an upper bound of the set f ([a, b]) while m+ 1
n
is not a lower

bound of f ([a, b]). Hence we can find points yn, zn ∈ [a, b]
such that f (yn) > M − 1

n
and f (zn) < m + 1

n
. At the same

time, m ≤ f (x) ≤ M for all x ∈ [a, b]. It follows that
f (yn) → M and f (zn) → m as n → ∞. By the
Bolzano-Weierstrass Theorem, the sequence {yn} has a
subsequence {ynk} converging to some c1. The sequence {zn}
also has a subsequence {zmk

} converging to some c2.
Moreover, c1, c2 ∈ [a, b]. The continuity of f implies that
f (ynk ) → f (c1) and f (zmk

) → f (c2) as k → ∞. Since
{f (ynk )} is a subsequence of {f (yn)} and {f (zmk

)} is a
subsequence of {f (zn)}, we conclude that f (c1) = M and
f (c2) = m. Thus the function f attains its maximum M on
the interval [a, b] at the point c1 and its minimum m at the
point c2.



Problem 4. Consider a function f : R → R defined by

f (−1) = f (0) = f (1) = 0 and f (x) =
x − 1

x2 − 1
sin

1

x
for x ∈ R \ {−1, 0, 1}.
(i) Determine all points at which the function f is continuous.

The polynomial functions g1(x) = x − 1 and g2(x) = x2 − 1
are continuous on the entire real line. Moreover, g2(x) = 0 if
and only if x = 1 or −1. Therefore the quotient
g(x) = g1(x)/g2(x) is well defined and continuous on
R \ {−1, 1}.
Further, the function h1(x) = 1/x is continuous on R \ {0}.
Since the function h2(x) = sin x is continuous on R, the
composition function h(x) = h2(h1(x)) is continuous on
R \ {0}.
Clearly, f (x) = g(x)h(x) for all x ∈ R \ {−1, 0, 1}. It
follows that the function f is continuous on R \ {−1, 0, 1}.



It remains to determine whether the function f is continuous
at points −1, 0, and 1. Observe that g(x) = 1/(x + 1) for
all x ∈ R \ {−1, 1}. Therefore g(x) → 1 as x → 0,
g(x) → 1/2 as x → 1, and g(x) → ±∞ as x → −1.
Since the function h is continuous at −1 and 1, we have
h(x) → h(−1) = − sin 1 as x → −1 and
h(x) → h(1) = sin 1 as x → 1. Note that sin 1 6= 0 since
0 < 1 < π/2. It follows that f (x) → ±∞ as x → −1.
In particular, f is discontinuous at −1.

Further, f (x) → 1
2
sin 1 as x → 1. Since f (1) = 0, the

function f has a removable discontinuity at 1.

Finally, the function f is not continuous at 0 since it has no
limit at 0. To be precise, let xn = (π/2 + 2πn)−1 and
yn = (−π/2 + 2πn)−1 for all n ∈ N. Then {xn} and {yn} are
two sequences of positive numbers converging to 0. We have
h(xn) = 1 and h(yn) = −1 for all n ∈ N. It follows that
f (xn) → 1 and f (yn) → −1 as n → ∞. Hence there is no
limit of f (x) as x → 0+.



(ii) Is the function f uniformly continuous on the interval
(0, 1)? Is it uniformly continuous on the interval (1, 2)?

Any function uniformly continuous on the open interval (0, 1)
can be extended to a continuous function on [0, 1]. As a
consequence, such a function has a right-hand limit at 0.
However we already know that the function f has no
right-hand limit at 0. Therefore f is not uniformly continuous
on (0, 1).

The function f is continuous on (1, 2] and has a removable
singularity at 1. Changing the value of f at 1 to the limit at
1, we obtain a function continuous on [1, 2]. It is known that
every function continuous on the closed interval [1, 2] is also
uniformly continuous on [1, 2]. Further, any function
uniformly continuous on the set [1, 2] is also uniformly
continuous on its subset (1, 2). Since the redefined function
coincides with f on (1, 2), we conclude that f is uniformly
continuous on (1, 2).



Bonus Problem 5. Given a set X , let P(X )

denote the set of all subsets of X . Prove that
P(X ) is not of the same cardinality as X .

Proof: We have to prove that there is no bijective map of X
onto P(X ). Let us consider an arbitrary map f : X → P(X ).
The image f (x) of an element x ∈ X under this map is a
subset of X . We define a set

E = {x ∈ X | x /∈ f (x)}.
By definition of the set E , any element x ∈ X belongs to E if
and only if it does not belong to f (x). As a consequence,
E 6= f (x) for all x ∈ X . Hence the map f is not onto. In
particular, it is not bijective.


