MATH 409
Advanced Calculus |

Lecture 13:
Review for Test 1.



Topics for Test 1

Part I: Axiomatic model of the real numbers

Axioms of an ordered field
Completeness axiom

Archimedean principle

Principle of mathematical induction
Binomial formula

Countable and uncountable sets

Wade's book: 1.1-1.6, Appendix A



Topics for Test 1

Part Il: Limits and continuity

Limits of sequences

Limit theorems for sequences

Monotone sequences

Bolzano-Weierstrass theorem

Cauchy sequences

Limits of functions

Limit theorems for functions

Continuity of functions

Extreme value and intermediate value theorems
Uniform continuity

Wade’s book: 2.1-2.5, 3.1-3.4



Axioms of real numbers

Definition. The set R of real numbers is a set
satisfying the following postulates:

Postulate 1. R is a field.

Postulate 2. There is a strict linear order < on R
that makes it into an ordered field.

Postulate 3 (Completeness Axiom).
If a nonempty subset E C R is bounded above,
then E has a supremum.



Theorems to know

Theorem (Archimedean Principle) For any real number
€ > 0 there exists a natural number n such that ne > 1.

Theorem (Principle of mathematical induction) Let P(n)
be an assertion depending on a natural variable n. Suppose
that

e P(1) holds,

e whenever P(k) holds, so does P(k + 1).
Then P(n) holds for all n € N.

Theorem If Ay, A, ... are finite or countable sets, then the
union A; UA>, U ... is also finite or countable. As a
consequence, the sets Z, Q, and N x N are countable.

Theorem The set R is uncountable.



Limit theorems for sequences

Theorem If |im x, = lim y,=a and
n—o00 n—o00

x, < w, <y, for all sufficiently large n, then

lim w, = a.

n—o00

Theorem If |im x,=a, lim y,=b, and
n—o0 n—00

x, <y, for all sufficiently large n, then a < b.

Theorem If |lim x,=a and |im y, = b,
n—o0 n—o0

then lim (x,+y,) =a+b, lim(x,—y,) =a—b,
n—o0 n—o00
and lim x,y, = ab. If, additionally, b # 0 and

n—o00

Yo # 0 for all n € N, then lim x,/y, = a/b.
n—o0



Theorem Any monotone sequence converges to a
limit if bounded, and diverges to infinity otherwise.

Theorem (Bolzano-Weierstrass) Every bounded
sequence of real numbers has a convergent

subsequence.

Theorem Any Cauchy sequence is convergent.



Theorem A function f : E — R is continuous at
a point ¢ € E if and only if for any sequence {x,}
of elements of E, x, — ¢ as n — oo implies
f(xn) — f(c) as n — 0.

Theorem Suppose that functions f,g: E — R
are both continuous at a point ¢ € E. Then the
functions f +g, f — g, and fg are also continuous
at ¢. If, additionally, g(c) # 0, then the function
f /g is continuous at ¢ as well.



Extreme Value Theorem If / =[a b| is a
closed, bounded interval of the real line, then any
continuous function f : | — R is bounded and
attains its extreme values (maximum and minimum)
on /.

Intermediate Value Theorem |[f a function

f :[a,b] — R is continuous then any number y
that lies between f(a) and f(b) is a value of £, i.e.,
yo = f(xp) for some xq € [a, b].

Theorem Any function continuous on a closed
bounded interval [a, b] is also uniformly continuous
on [a, b].



Sample problems for Test 1

Problem 1 (15 pts.) Prove that for any n € N,
n’(n+1)?

P+2+33 4. +n= 7

Problem 2 (30 pts.) Let {F,} be the sequence
of Fibonacci numbers: fF{ = F, =1 and
F,=F, 1+ F,_» for n>2.

(i) Show that the sequence {Fax/Fok_1}ken Iis
increasing while the sequence {Fpxi1/Fok}ken is
decreasing.

F, 541
(i) Prove that lim (71 = YO+ 1

n—oo F, 2




Sample problems for Test 1

Problem 3 (25 pts.) Prove the Extreme Value
Theorem: if f:[a, b] — R is a continuous function
on a closed bounded interval [a, b], then f is
bounded and attains its extreme values (maximum
and minimum) on [a, b].



Sample problems for Test 1

Problem 4 (20 pts.) Consider a function
f:R — R defined by f(—1)=f(0)=f(1)=0

—1 1
and f(x) = X2 1sin— for x e R\ {-1,0,1}.
X

X R
(i) Determine all points at which the function f is
continuous.
(ii) Is the function f uniformly continuous on the

interval (0,1)7 Is it uniformly continuous on the
interval (1,2)7 Explain.



Sample problems for Test 1

Bonus Problem 5 (15 pts.) Given a set X, let
P(X) denote the set of all subsets of X. Prove
that P(X) is not of the same cardinality as X.



Problem 1. Prove that for any n € N,

n?(n+1)>

—

Proof: The proof is by induction on n. First we consider the
case n= 1. In this case the formula reduces to 13 = Q,
which is a true equality. Now assume that the formula holds
for n = k, thatis,

13_‘_23_‘_33_‘_‘.‘_1_”3:

k?(k +1)°
13+23+---+k3:¥.
Adding (k + 1)* to both sides of this equality, we get
k?(k +1)°
13+23+---+k3+(k+1)3:%+(k+1)3

= (k12 (4 (k4 1)) = (k4 12 s (1P

which means that the formula holds for n = k 4+ 1 as well.
By induction, the formula holds for any natural number n.



Remark. We have proved that

13+23+33+...+n3:M
1 .
Also, it is known that
1
1+2—|—3+---+n:w.

It follows that
P+224+3 4+ +n=(1+2+3+ -+ n)?

for all n € N.



Problem 2. Let {F,} be the sequence of Fibonacci
numbers: F;=F, =1 and F,=F,_1 + F,_» for n> 2.

(i) Show that the sequence {Fak/Fak—1}ken Iis increasing
while the sequence {Faxi1/Fak}ken is decreasing.

Let x, = Foi1/F,, n € N. Then

Fn+2 Fn_'_Fn-‘rl Fn 1
n = = :1 :1 e —
s Fn+1 Fn+1 * Fn+1 * Xn

for all n € N. In particular, x; =1, xo =1+ 1/x =2,
x3=1+1/x0=3/2, x4=1+1/x3 =5/3. Notice that

X1 < X3 < Xg < Xo.

The function f(x) =1+ 1/x is strictly decreasing on the
interval | = (0,00) and maps it to itself. Therefore its
second iteration g = f o f is strictly increasing on / and
g(l) CI. We have x,,2 = f(xp11) = f(f(xn)) = g(xn) for
all n € N. Now it follows by induction on k that

Xok—1 < Xok41 < Xok42 < Xok for all k € N.



Problem 2. Let {F,} be the sequence of Fibonacci
numbers: F=F =1and F,=F,_1+ F,_» for n> 2.

Fn+1_\/§+1

(ii) Prove that lim F >

n—o0

We already know that the numbers x, = F,.1/F, satisfy
inequalities
Xok—1 < Xok4+1 < Xok42 < Xok

for all k € N. It follows that the sequence {xpx_1} is strictly

increasing, the sequence {xy} is strictly decreasing, and both

sequences are bounded. Therefore these sequences are

converging to some positive limits: xxx_1 — ¢; and xpx — &

as k — oo. To prove that ILm Foi1/Fo=(V5+1)/2, itis
n—oo

enough to show that ¢; = ¢, = (v/5+1)/2.



For any x > 0 we obtain
1 1
gx)="f(f(x))="f (1+;) = 1+1+—1

1 X 2x+1
+X—+1 +x—|—1 x+1

X

It follows that g(xxk—1) — g(c1) and g(xx) — g(c2) as

k — oco. However g(XZk—l) = X2k+1 and g(sz) = X242,

which implies that g(c1) = ¢ and g(c) = . Since
Cox(x+1) 2x+1  x*—x-1

x—glx) = x+1 x+1  x4+1

ci1 and ¢, are roots of the equation x> —x —1=0. This
equation has two roots, (1 —+/5)/2 and (v/5+1)/2. One of
the roots is negative. Thus both ¢; and ¢, are equal to the
other root, (v/5+1)/2.



Problem 3. Prove the Extreme Value Theorem: if

f :[a, b] = R is a continuous function on a closed bounded
interval [a, b], then f is bounded and attains its extreme
values (maximum and minimum) on [a, b].

Proof: First let us prove that the function f is bounded.
Assume the contrary. Then for every n € N there exists a
point x, € [a, b] such that |f(x,)| > n. We obtain a
sequence {x,} of elements of [a, b] such that the sequence
{f(xn)} diverges to infinity. Since the sequence {x,} is
bounded, it has a convergent subsequence {x,, } due to the
Bolzano-Weierstrass Theorem. Let ¢ be the limit of x,, as

k — 0o. Since a < x,, < b for all k, the Comparison
Theorem implies that a < ¢ < b, i.e,, c € [a,b]. Then the
function f is continuous at c. As a consequence,

f(xn) — f(c) as k — oco. However the sequence {f(x,,)} is
a subsequence of {f(x,)} and hence diverges to infinity. This
contradiction shows that the assumption was wrong: the
function f is bounded.



Since the function f is bounded, the image f([a, b]) is a
bounded subset of R. Let m = inf f([a, b]),

M = sup f([a, b]). For any n € N the number M — 2 is not
an upper bound of the set f([a, b]) while m+ 2 is not a lower
bound of f([a, b]). Hence we can find points y,, z, € [a, b]
such that f(y,) > M —1 and f(z,) <m-+ 2. At the same
time, m < f(x) < M for all x € [a, b]. It follows that

f(y,) = M and f(z,) - m as n— oco. By the
Bolzano-Weierstrass Theorem, the sequence {y,} has a
subsequence {y,, } converging to some ¢;. The sequence {z,}
also has a subsequence {z,, } converging to some c,.
Moreover, ¢, ¢, € [a, b]. The continuity of f implies that
f(yn) — f(c1) and f(zn,) — f(c) as k — co. Since
{f(¥n,)} is a subsequence of {f(y,)} and {f(zn,)} is a
subsequence of {f(z,)}, we conclude that f(¢;) =M and
f(c2) = m. Thus the function f attains its maximum M on
the interval [a, b] at the point ¢; and its minimum m at the
point G.



Problem 4. Consider a function f : R — R defined by
x—1 .1

f(-=1)=1f(0)=f(1)=0 and f(x)= 215Ny

for xe R\ {-1,0,1}.

(i) Determine all points at which the function f is continuous.

The polynomial functions gi(x) =x — 1 and g(x) =x*—1
are continuous on the entire real line. Moreover, g(x) =0 if
and only if x =1 or —1. Therefore the quotient

g(x) = g1(x)/g(x) is well defined and continuous on

R\ {-1,1}.

Further, the function hy(x) = 1/x is continuous on R\ {0}.
Since the function hy(x) = sin x is continuous on R, the
composition function h(x) = ha(hy(x)) is continuous on

R\ {0}.

Clearly, f(x) = g(x)h(x) for all x e R\ {-1,0,1}. It
follows that the function f is continuous on R\ {—1,0,1}.



It remains to determine whether the function f is continuous
at points —1, 0, and 1. Observe that g(x) =1/(x + 1) for
all x e R\ {—1,1}. Therefore g(x) -1 as x — 0,

g(x) = 1/2 as x — 1, and g(x) = oo as x — —1.

Since the function h is continuous at —1 and 1, we have

h(x) — h(—1) = —sinl as x — —1 and

h(x) — h(1) =sinl as x — 1. Note that sin1 # 0 since
0<1<m/2. Itfollows that f(x) — oo as x — —1.

In particular, f is discontinuous at —1.

Further, f(x) — 1sin1 as x — 1. Since f(1) =0, the
function f has a removable discontinuity at 1.

Finally, the function f is not continuous at O since it has no
limit at 0. To be precise, let x, = (7/2 +2wn)~! and

Yo = (—m/2+42mn)~* forall n€N. Then {x,} and {y,} are
two sequences of positive numbers converging to 0. We have
h(x,) =1 and h(y,) = —1 for all n € N. It follows that
f(x,) =1 and f(y,) — —1 as n — oo. Hence there is no
limit of f(x) as x — 0+.



(i) Is the function f uniformly continuous on the interval
(0,1)? s it uniformly continuous on the interval (1,2)7

Any function uniformly continuous on the open interval (0,1)
can be extended to a continuous function on [0,1]. As a
consequence, such a function has a right-hand limit at 0.
However we already know that the function f has no
right-hand limit at 0. Therefore f is not uniformly continuous
on (0,1).

The function f is continuous on (1,2] and has a removable
singularity at 1. Changing the value of f at 1 to the limit at
1, we obtain a function continuous on [1,2]. It is known that
every function continuous on the closed interval [1,2] is also
uniformly continuous on [1,2]. Further, any function
uniformly continuous on the set [1,2] is also uniformly
continuous on its subset (1,2). Since the redefined function
coincides with f on (1,2), we conclude that f is uniformly
continuous on (1,2).



Bonus Problem 5. Given a set X, let P(X)
denote the set of all subsets of X. Prove that
P(X) is not of the same cardinality as X.

Proof: We have to prove that there is no bijective map of X
onto P(X). Let us consider an arbitrary map f : X — P(X).
The image f(x) of an element x € X under this map is a
subset of X. We define a set

E={xeX|x¢f(x)}

By definition of the set E, any element x € X belongs to E if
and only if it does not belong to f(x). As a consequence,

E # f(x) for all x € X. Hence the map f is not onto. In
particular, it is not bijective.



