MATH 409
Advanced Calculus |

Lecture 15:
Derivatives of elementary functions.
Derivative of the inverse function.



The derivative

Definition. A real function f is said to be
differentiable at a point a € R if it is defined on
an open interval containing a and the limit

im f(a+ h)— f(a)

h—0 h
exists. The limit is denoted f'(a) and called the
derivative of f at a.

f(x)—f
An equivalent condition is f'(a) = lim M.
X—a X — a

Remark. The one-sided limits lim %‘C(a) and
x—a+ X
lim w are called the right-hand and left-hand

X—ra— -
derivatives of f at a. One of them or both might exist even if

f is not differentiable at a.



Differentiability theorems

Theorem If functions f and g are differentiable at a point
a € R, then their sum f + g, difference f — g, and product
f - g are also differentiable at a. Moreover,

(f +g)'(a) = f'(a) + g'(a),
(f —g)(a) = f'(a) — g'(a),
(f-g)(a) = f'(a)g(a) + f(a)g'(a).
If, additionally, g(a) # 0 then the quotient f/g is also
differentiable at a and

f / ) — f'(a)g(a) — f(a)g'(a)
<g) (2) (g(a))? '

Theorem If a function f is differentiable at a point a € R
and a function g is differentiable at f(a), then the
composition g o f is differentiable at a. Moreover,

(gof)(a) =g'(f(a)) - '(a).




The derivative as a function

Definition. A function f is said to be differentiable on an
open interval (c,d) if it is differentiable at each point of
(c,d). Itis said to be differentiable on a closed interval

[c, d] if it is differentiable on the open interval (c,d) and,
additionally, there exist the right-hand derivative of f at ¢ and
the left-hand derivative at d.

Suppose that a function f is differentiable on an interval /.
Then the derivative of f can be regarded as a function on /.

. df
Notation: f'. Alternative notation: f, = D.f, 1.
X

The value of the derivative function at a point a € [ is
denoted f'(a) or (f(x))|x=a-

For example, the derivative of a function f(x) = x
be denoted f/(2) or (x?)|«=2, but not (22)".

2 at 2 can



Higher-order derivatives

Higher-order derivatives of a function f are defined inductively.
Namely, for any integer n > 2 and any a € R, the n-th
derivative of f at the point a, denoted f(")(a), is defined by
f"(a) = (F"D)(a).

Let / be an interval of the real line R. We denote by C(/) or
CO(1) the set of all continuous functions on /. For any n€ N
we denote by C"(/) the set of all functions f : | — R that are
n times continuously differentiable on /, i.e., the n-th
derivative (" is well-defined and continuous on /. Finally,
C>(I) denotes the set of all functions f : /| — R that are
infinitely differentiable on /, i.e., f(")(a) is well-defined for
all ne N and a€ /.

We know that every function differentiable at a point a is also
continuous at a. It follows that C™(/) c C"(/) for all
n>0. Besides, C>=(/)= ) C"(]).

n>0



Examples of differentiable functions
o 1'=0.
o X' =1,

(x?) = 2x.

<1>/ _ —% on R\ {0}.

X

(Vx)' = 7 on (0, 00).

e (sinx)" = cosx.
e (cosx) = —sinx.
1 T
- e (43
e (tanx) 2y O >3



Examples
e f(0)=0, f(x)—xsm—, x # 0.

Using the Product Rule and the Chain Rule, we obtain that
the function f is differentiable on R\ {0}. Moreover, for any

x # 0,

1\ 1 1\
f'(x) = (xsin —) =sin— 4 x (sin —)
X X X

1 L1\ 1 1/ 1
=sin—+xsin— (-] =sin-+xcos— | ——
X X \ X X X X

.11 1
=sin— — —cos —.
X X X

Also, we know that f is continuous at 0. However it is not

differentiable at 0. Indeed, M = sin 1 which has

h h
no limit as h — 0.



Examples
1

X

, x # 0.

Using the Product Rule and the previous example, we obtain
that the function g is differentiable on R\ {0}. Moreover, for

any x # 0,

/ ( ! 1)/ ! 1 ( ! 1)/
g'(x)=|x-xsin=) =xsin—+x(xsin—
X X X

.1 ( 1 1 1) .1 1
=xsin—+x|sin— — —cos— | =2xsin— — cos —.

e g(0)=0, g(x)=xsin

X X X X X X

The function g is differentiable at 0 as well. Indeed,
g(h) — &(0)
h

Notice that g is not continuously differentiable on R since g’
is not continuous at 0. Namely, Iinz) g'(x) does not exist.
X—

:hsin%—>0 as h— 0.



Power rule: integer exponents

Theorem (x") = nx""! forall x e R and ne N.

Proof: The proof is by induction on n. In the case n=1,
we have (x!)=x"=1=1-x% forall x € R. Now assume
that (x") = nx"! for some n € N and all x € R. Using
the Product Rule, we obtain (x"1) = (x"x)" = (x")'x + x"x’
= nx"Ix +x" = (n+ 1)x".

Remark. The theorem can also be proved directly using the

n__ gn

formula =x"1 4 x4 .. 4 xa" %4 a" L.

X —a

Theorem (x™ ") = —nx~"! forall x #0, neN.

Proof: Using the Reciprocal Rule, we obtain
(X—n)/ — (1/Xn)/ — —(X")//(X")z — _an—l/X2n — _nX—n—l.



Derivative of the inverse function

Theorem Suppose f is an invertible continuous
function. If f is differentiable at a point a and
f'(a) # 0, then the inverse function is differentiable
at the point b = f(a) and, moreover,

(F(6) =

Remark. In the case f'(a) =0, the inverse function f~1 is
not differentiable at f(a). Indeed, if f~! is differentiable at
b = f(a), then the Chain Rule implies that

(F 0 fY(a) = (F2Y(5) - F(a)
Obviously, f~1 o f is the identity function. Therefore
(f1of)(a)=1+#0 sothat f'(a) # 0.




Proof of the theorem: The function f is defined on an open
interval | = (c,d) containing a. Since f is continuous and
invertible, it follows from the Intermediate Value theorem that
f is strictly monotone on /, the image f(/) is an open interval
containing b, and the inverse function f~! is continuous on
f(I). Besides, f1is strictly monotone on f(/).

We have lim w = f/(a). Since f'(a) #0, it

follows that lim X4 = 1
x=a f(x) —f(a)  f'(a)’

continuous and monotone on the interval f(/), we obtain that
f~Y(y) —a and f71(y)# a when y — b and y # b.

Since f1is

) -a ()
Therefore yll_n?bﬁ - y“Lnb f(F(y)) — b
X—a 1

= |lim =

W )~ f(a)  Fla)



Example

e f(x)=arccosx, x € [-1,1].

The function g(y) = cosy is strictly decreasing on the
interval [0, 7] and maps this interval onto [—1,1]. By
definition, the function f(x) = arccos x is the inverse of the
restriction of g to [0,7]. Notice that g’(0) = g’(w) =0 and
g'(y) #0 for y € (0,m). It follows that the function f is
differentiable on (—1,1) and not differentiable at 1 and —1.
Moreover, for any x € (—1,1),

"(x) = 1 = — .
f'(x) g/ (F(x)) sin(arccos x)

Let y = arccosx. We have sin?y + cos?y = 1. Besides,
siny > 0 since y € (0,7). Consequently,

1
siny = /1 —cos?y =+/1—x2. Thus f(x) = —

V1—x2




Exponential and logarithmic functions

Theorem The sequence x, = (1 + %)" n € N is increasing

and bounded, hence convergent.

The limit is the number e =2.718281828... ( “I'm forming a
mnemonic to remember a constant in analysis”).

Corollary lim (1 + x)'/* =e.
x—0

For any a >0, a# 1 the exponential function f(x) = a* is
strictly monotone and continuous on R. It maps R onto
(0,00). Therefore the inverse function g(y) = log,y is
strictly monotone and continuous on (0,00). The natural
logarithm log, y is also denoted log y.

Since (1+ h)Y" — e as h — 0, it follows that

h~log(1 + h) = log(1+ h)¥" — loge =1 as h— 0. In
other words, (logy)'|,=1 = 1. This implies that

(&) ]x=0 = 1.



Examples
o f(x)=¢€", xeR.

f(x+h)—f(x) eth—e ee—ex (el —1)

h h h  h
for all x, h € R. Therefore for any x € R,
. f(x+h)—1f(x) . eh—1
! _ _ X — X / — X
f(x)-}:_rg) . —ell7|_r1107h e f'(0) = e.

o f(x)=2a" x€R, where a>0.

f(x) = 8% = X183 5o that f'(x) = eX'°8?loga = a*log a.

e f(x)=logx, x € (0,00).

Since f is the inverse of the function g(y) = e”, we obtain
f'(x) =1/g'(logx) = 1/e°8x = 1/x for all x > 0.



Power rule: general case

Theorem (x%) = ax® ! forall x>0 and a € R.

Proof: Let us fix a number a € R and consider a
function f(x) = x%, x € (0,00). Forany x >0
we obtain f(x) = e'98(x") = glogx — glogx \yhere
a=ce"“ Hence f =hog, where g(x)=logx,
x>0 and h(y) = 2", y € R. By the Chain Rule,
f'(x) = H(g(x)) - g'(x) = a°*loga- (log x)
= f(x)loga- (logx) = f(x) - a(log x)’

— f(x) . a/x = x%. a/x = ax® 1,



