MATH 409
Advanced Calculus |

Lecture 17:
Applications of the mean value theorem.
I’'Hopital’s rule.



Fermat’s Theorem |If a function f is differentiable at a point
c of local extremum (maximum or minimum), then f’(c) = 0.

Rolle’s Theorem If a function f is continuous on a closed
interval [a, b], differentiable on the open interval (a, b), and
if f(a) = f(b), then f'(c) =0 for some c € (a, b).

Mean Value Theorem If a function f is continuous on
[a, b] and differentiable on (a, b), then there exists c € (a, b)
such that f(b) — f(a) = f'(c) (b — a).

Theorem Suppose that a function f is continuous on [a, b]
and differentiable on (a, b). Then the following hold.

(i) f is increasing on [a, b] if and only if >0 on (a,b).
(ii) f is decreasing on [a, b] if and only if /<0 on (a, b).
(iii) If /' >0 on (a, b), then f is strictly increasing on [a, b].
(iv) If " <0 on (a,b), then f is strictly decreasing on |[a, b].
(v) f is constant on [a, b] if and only if f" =0 on (a,b).



Examples

o ¢ >x+1 forall x#0.

Consider a function f(x) = e*—x—1, x € R. This function
is differentiable on R and f’(x) =e* —1 forall x € R. We
observe that the derivative f’ is strictly increasing. Since
f'(0) =0, we have f'(x) <0 for x <0 and f'(x) >0 for
x > 0. It follows that the function f is strictly decreasing on

(—00,0] and strictly increasing on [0,00). As a consequence,
f(x) > f(0) =0 forall x#0. Thus e*>x+1 for x #0.

e logx <x—1 forall x>0, x#1.

By the above, 71 > (x —1)+1=x forall x# 1. Since
the natural logarithm is strictly increasing on (0, c0), it
follows that loge*™! > logx for x >0, x # 1. Equivalently,
logx < x—1 for x>0, x # 1.



Examples

o (1-x)*>1—ax forall x e (0,1) and o > 1.

Let us fix an arbitrary o > 1 and consider a function
fx)=(1—x)*—1+ax, x€e]0,1).

This function is differentiable on [0,1) and

f'(x)= —a(l —x)**+a forall xe€[0,1). Since

a —1>0, we obtain that (1 —x)*"' <1 for x € (0,1).
Hence f'(x) >0 for x € (0,1). It follows that the function
f is strictly increasing on [0,1). As a consequence,

f(x) > f(0) =0 for all x € (0,1). Equivalently,
(1—-x)*>1—ax for x € (0,1).



Examples

—1
3 (l—x)a<1—ozx+Mx2 for all

2
x €(0,1) and a > 2.

Let us fix an arbitrary o > 2 and consider a function
f(x)=(1-x)*—14ax—ta(a—1)x* x€[0,1).

This function is infinitely differentiable on [0, 1),

f'(x)= —a(l —x)*'+a—afa—1)x, and

f(x) = a(a— 1)(1 — x)*2 — a(a — 1) forall x €[0,1).
Since o — 2 > 0, we obtain that f”(x) <0 for x € (0,1).

It follows that the derivative f’ is strictly decreasing on [0, 1).
As a consequence, f'(x) < f'(0) =0 for all x € (0,1).

Now it follows that the function f is also strictly decreasing on
[0,1). Consequently, f(x) < f(0) =0 forall x e (0,1).
The required inequality follows.



Examples

e The function f(x) = (14 x)* is strictly
decreasing on (0, 00).

Consider a function g(x) = log f(x), x > 0. For every

x >0, we have g(x) = log(1l+ x)/x. Therefore g is
differentiable on (0,00) and g'(x) = (5 — log(1 + x)) /x*
for all x > 0. Now we introduce another function

h(x) = 5 —log(1+ x) =1 — 135 — log(1 +x), x> 0.
Note that h(x) = x?g’(x) for x > 0. The function h is
differentiable on [0,00) and H(x) = ﬁ — 5 <0 forall

x > 0. It follows that h is strictly decreasing on [0,00). In
particular, h(x) < h(0) =0 for x > 0. Then g’'(x) <0 for
x >0 as well. Therefore g is strictly decreasing on (0, 00).
Since the function f is the composition of g with the strictly

increasing function y(x) = e*, it is also strictly decreasing on
(0, 00).



Taylor’s formula

Theorem If a function f:/ — R is n+ 1 times
differentiable on an open interval /, then for any two points
X, Xp € | there is a point ¢ between x and xg such that

— 9 (x0) o FU(e) n+1
f(x) = f(xo)+k§ R 0 0"
Remark. The function
2 ()
P} (x) = f(xo) + (1):0)(x —x0) + -+ n(,XO)(x — xo)"

is a polynomial of degree at most n. It is called the Taylor
polynomial of order n generated by f centered at xg.
Taylor's formula provides information on the remainder term
rfxo = f — PfX |n many cases this information allows to

estimate |rf*¢(x)| or to prove an inequality of the form
f(x) < Pf>o(x) or f(x) > PI™(x).



I’'Hopital’s Rule

I’'Hopital’s Rule helps to compute limits of quotients in those
cases where limit theorems do not apply (because of an
indeterminacy of the form 0/0 or co/00).

Theorem Let a be either a real number or —oo or +o0.
Let / be an open interval such that either a € | or a is an
endpoint of /. Suppose that functions f and g are
differentiable on / and that g(x),g’(x) # 0 for x € I'\ {a}.
Suppose further that

lim f(x) = limg(x) = A,

xel xel
where A=0 or co. If the limit limf’(x)/g'(x) exists (finite
xel

or infinite), then
. f(x) . f(x)
[im ——= = Ilim Y
erg(x) g e'(x)




Remark. In fact, the theorem includes several similar rules
corresponding to various kinds of limits (lim,_,., lim,_,_,
limy_,, for a € R, lim,, o, lim,, o) and the two types of
indeterminacy (0/0 and oo/c0).

Proof in the case lim,_,,, 0/0: We extend f and g to
I U{a} by letting f(a) = g(a) =0. By hypothesis, f and g
are continuous on /U {a} and differentiable on /. By
Generalized Mean Value Theorem, for any x € | there exists
¢« € (a,x) such that
g'(c) (f(x) — f(a)) = f'(cx) (g(x) — g(a)).

That is, g'(c)f(x) = f'(cx)g(x). Since g(cy),g'(cx) #0,
we obtain f(x)/g(x) = f'(cx)/g'(c). Since ¢, € (a,x), we
have ¢, — a+ as x — a+. It follows that

f(x) f'(c)

lim —=< =1 )
x—|>r2+ g x) an;—i- g’(cx) c—a+ g’(c)




Examples

.1 —cosx

o |im—.
x—0 X2

The functions f(x) =1 —cosx and g(x) = x? are infinitely
differentiable on R. We have Iirrz) f(x)=f(0)=0 and
X—>

lim g(x) = g(0) = 0.
Further, f'(x) = sinx and g’(x) = 2x. We obtain
lim f'(x) = f’(0) =0 and lim g'(x) = g'(0) = 0.
x—0 x—0
Even further, f”(x) = cosx and g”(x) =2. We obtain
lim f”(x) = f"(0) =1 and lim g”"(x) = g"(0) = 2.
x—0 x—0
It follows that Iim0 f"(x)/g"(x) =1/2.
X—r
By I'Hopital’s Rule, Iim0 f'(x)/g'(x) =1/2. Applying
X—
I'Hépital’s Rule once again, we obtain Iim0 f(x)/g(x)=1/2.
X—



Examples

e lim x“logx and Ilim x“logx, where a # 0.
x—0+ X—4-00

We have |im logx = —o0 and I|im logx = + o0.
x—0+ X——+00

Besides, Iim x =0 if « <0 and +c0 if a > 0.

x—0+

Since 1/x — 0+ as x — +00, we obtain that
lim x=® = lim x°.
X——+00 x—0+

It follows that lim x“logx = —oo0 if a <0 and
x—0+

lim x“logx =400 if a>0.
X——400



Examples

e lim x“logx and Ilim x“logx, where o # 0.
x—0+ X—7400

Further, we have x*logx = f(x)/g(x), where the functions
f(x) =logx and g(x) =x"“ are infinitely differentiable on
(0,00). For any x > 0 we obtain f'(x) =1/x and

g'(x) = —ax 1. Hence f'(x)/g'(x) = —a x> for all
x > 0. Therefore in the case o < 0 we have

Jim ()/g'(x) = +o0 and lim_f(x)/g'(x) =

In the case o > 0, the two Iimlts are interchanged.

By I'Hopital’s Rule, |in01+ f(x)/g(x)=0 if >0 and
X—

thoo f(x)/g(x) =0 if a <0.



