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Advanced Calculus I

Lecture 18:

Darboux sums.

The Riemann integral.



Partitions of an interval

Definition. A partition of a closed bounded interval [a, b] is
a finite subset P ⊂ [a, b] that includes the endpoints a and b.

Let x0, x1, . . . , xn be the list of all elements of P ordered so
that x0 < x1 < · · · < xn (note that x0 = a and xn = b).
These points split the interval [a, b] into finitely many
subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn]. The norm of the
partition P, denoted ‖P‖, is the maximum of lengths of those
subintervals: ‖P‖ = max

1≤j≤n
|xj − xj−1|.

Given two partitions P and Q of the same interval, we say
that Q is a refinement of P (or that Q is finer than P) if
P ⊂ Q. Observe that P ⊂ Q implies ‖Q‖ ≤ ‖P‖.

For any two partitions P and Q of the interval [a, b], the
union P ∪ Q is also a partition that refines both P and Q.



Darboux sums

Let P = {x0, x1, . . . , xn} be a partition of an interval [a, b],
where x0 = a < x1 < · · · < xn = b. Let f : [a, b] → R be a
bounded function.

Definition. The upper Darboux sum (or the upper

Riemann sum) of the function f over the partition P is the
number

U(f ,P) =

n
∑

j=1

Mj(f )∆j ,

where ∆j = xj − xj−1 and Mj(f ) = sup f ([xj−1, xj ]) for
j = 1, 2, . . . , n. Likewise, the lower Darboux sum (or the
lower Riemann sum) of f over P is the number

L(f ,P) =
n

∑

j=1

mj(f )∆j ,

where mj(f ) = inf f ([xj−1, xj ]) for j = 1, 2, . . . , n.



Properties of the Darboux sums

• L(f ,P) ≤ U(f ,P).

Indeed, inf f (J) ≤ sup f (J) for any subinterval J ⊂ [a, b].

• U(f ,P) ≤ sup f ([a, b]) · (b − a).

We have sup f (J) ≤ sup f ([a, b]) for any subinterval
J ⊂ [a, b]. Then sup f (J) · |J| ≤ sup f ([a, b]) · |J|, where |J|
is the length of J . Summing up over all subintervals J created
by the partition P, we obtain U(f ,P) ≤ sup f ([a, b]) · (b− a).

• inf f ([a, b]) · (b − a) ≤ L(f ,P).

The proof is analogous to the previous one.

Remark. Observe that sup f ([a, b]) · (b − a) = U(f ,P0) and
inf f ([a, b]) · (b − a) = L(f ,P0), where P0 is the trivial
partition: P0 = {a, b}.



Properties of the Darboux sums

• L(f ,P) ≤ L(f ,Q) ≤ U(f ,Q) ≤ U(f ,P) for any

partition Q that refines P.

Every subinterval J created by the partition P is the union of
one or more subintervals J1, J2, . . . , Jk created by Q. Since
sup f (Ji) ≤ sup f (J) for 1 ≤ i ≤ k, it follows that
∑k

i=1
sup f (Ji) · |Ji | ≤ sup f (J) ·

∑k

i=1
|Ji | = sup f (J) · |J|.

Summing up this inequality over all subintervals J , we obtain
U(f ,Q) ≤ U(f ,P). The inequality L(f ,P) ≤ L(f ,Q) is
proved in a similar way.

• L(f ,P) ≤ U(f ,Q) for any partitions P and Q.

Since the partition P ∪ Q refines both P and Q, it follows
from the above that L(f ,P) ≤ L(f ,P ∪ Q) and
U(f ,P ∪Q) ≤ U(f ,Q). Besides, L(f ,P ∪Q) ≤ U(f ,P ∪Q).



Upper and lower integrals

Suppose f : [a, b] → R is a bounded function.

Definition. The upper integral of f on [a, b], denoted
∫ b

a

f (x) dx or (U)

∫ b

a

f (x) dx , is the number

inf {U(f ,P) | P is a partition of [a, b] }.

Similarly, the lower integral of f on [a, b], denoted
∫ b

a

f (x) dx or (L)

∫ b

a

f (x) dx , is the number

sup {L(f ,P) | P is a partition of [a, b] }.

Remark. Since −∞ < L(f ,P) ≤ U(f ,Q) < +∞ for all
partitions P and Q, it follows that

−∞ < (L)

∫ b

a

f (x) dx ≤ (U)

∫ b

a

f (x) dx < +∞.



Integrability

Definition. A bounded function f : [a, b] → R is

called integrable (or Riemann integrable) on the
interval [a, b] if the upper and lower integrals of f
on [a, b] coincide. The common value is called the

integral of f on [a, b] (or over [a, b]) and denoted
∫

b

a

f (x) dx .

Theorem A bounded function f : [a, b] → R is
integrable on [a, b] if and only if for every ε > 0

there is a partition Pε of [a, b] such that
U(f ,Pε)− L(f ,Pε) < ε.



Proof of the theorem: The “if” part of the theorem follows
since

0 ≤ (U)

∫ b

a

f (x) dx − (L)

∫ b

a

f (x) dx ≤ U(f ,P)− L(f ,P)

for any partition P. Conversely, assume that f is integrable
on [a, b]. Given ε > 0, there exists a partition P of [a, b]
such that

U(f ,P) <

∫ b

a

f (x) dx +
ε

2
.

Also, there exists a partition Q of [a, b] such that

L(f ,Q) >

∫ b

a

f (x) dx −
ε

2
.

Then U(f ,P)− L(f ,Q) < ε. Now P ∪ Q is a partition of
[a, b] that refines both P and Q. It follows that
U(f ,P ∪ Q) ≤ U(f ,P) and L(f ,P ∪ Q) ≥ L(f ,Q). Hence
U(f ,P ∪ Q)− L(f ,P ∪ Q) ≤ U(f ,P)− L(f ,Q) < ε.



Examples

• Constant function f (x) = c is integrable on any

interval [a, b] and

∫

b

a

f (x) dx = c(b − a).

Indeed, for the trivial partition P0 = {a, b} we obtain
U(f ,P0) = c(b − a) = L(f ,P0).

• Step function f (x) =

{

1 if x > 0,
0 if x ≤ 0

is

integrable on [−1, 1] and

∫

1

−1

f (x) dx = 1.

For any ε ∈ (0, 1) consider a partition Pε = {−1,−ε, ε, 1}.
Then U(f ,Pε) = 1 + ε and L(f ,Pε) = 1− ε.



Examples

• Dirichlet function f (x) =

{

1 if x ∈ Q,

0 if x ∈ R \Q

is not integrable on any interval [a, b].

Indeed, any subinterval of [a, b] contains both rational and
irrational points. Therefore U(f ,P) = b − a and
L(f ,P) = 0 for all partitions of [a, b].

• Riemann function f (x) =

{

1/q if x = p/q,

0 if x ∈ R \Q

is integrable on any interval [a, b].

For any δ > 0 the interval [a, b] contains only finitely many
points y1, y2, . . . , yk such that f (yi) ≥ δ. Let Pδ be a
partition of [a, b] that includes points yi ± δ/k. Then
L(f ,Pδ) = 0 and U(f ,Pδ) ≤ 2δ + δ(b − a).



Continuity =⇒ integrability

Theorem If a function f : [a, b] → R is continuous on the
interval [a, b], then it is integrable on [a, b].

Proof: Since the function f is continuous, it is bounded on
[a, b]. Furthermore, f is uniformly continuous on [a, b].
Therefore for every ε > 0 there exists δ > 0 such that
|x − y | < δ implies |f (x)− f (y )| < ε/(b − a) for all
x , y ∈ [a, b]. Obviously, there exists a partition
P = {x0, x1, . . . , xn} of [a, b] that satisfies ‖P‖ < δ. Let
J = [xj−1, xj ] be an arbitrary subinterval of [a, b] created by
P. By the Extreme Value Theorem, there are points
x−, x+ ∈ J such that f (x+) = sup f (J) and f (x−) = inf f (J).
Since ‖P‖ < δ, the length of J satisfies |J| < δ. Then
|x+ − x−| ≤ |J| < δ so that |f (x+)− f (x−)| < ε/(b − a). It
follows that sup f (J) · |J| − inf f (J) · |J| < ε|J|/(b − a).
Summing up the latter inequality over all subintervals J , we
obtain that U(f ,P)− L(f ,P) < ε. Thus f is integrable.



Riemann sums

Definition. A Riemann sum of a function f : [a, b] → R

with respect to a partition P = {x0, x1, . . . , xn} of [a, b]
generated by samples tj ∈ [xj−1, xj ] is a sum

S(f ,P, tj) =
∑n

j=1
f (tj) (xj − xj−1).

Remark. Note that the function f need not be bounded. If f
is bounded, then L(f ,P) ≤ S(f ,P, tj) ≤ U(f ,P) for any
choice of samples tj .

Definition. The Riemann sums S(f ,P, tj) converge to a limit
I (f ) as ‖P‖ → 0 if for every ε > 0 there exists δ > 0 such
that ‖P‖ < δ implies |S(f ,P, tj)− I (f )| < ε for any
partition P and choice of samples tj .

Theorem The Riemann sums S(f ,P, tj) converge to a limit
I (f ) as ‖P‖ → 0 if and only if the function f is integrable on

[a, b] and I (f ) =
∫ b

a
f (x) dx .


