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Lecture 18:
Darboux sums.
The Riemann integral.



Partitions of an interval

Definition. A partition of a closed bounded interval [a, b] is
a finite subset P C [a, b] that includes the endpoints a and b.

Let xg,x1,...,x, be the list of all elements of P ordered so
that xo < x; < --- < x, (note that xp = a and x, = b).
These points split the interval [a, b] into finitely many

subintervals [xp, x1], [x1,%2], - - -, [Xn_1, Xn]. The norm of the
partition P, denoted ||P||, is the maximum of lengths of those
subintervals: ||P|| = max |x; — xj_1|.

1<j<n

Given two partitions P and Q of the same interval, we say
that Q is a refinement of P (or that Q is finer than P) if
P C Q. Observe that P C Q implies ||Q] < ||P|.

For any two partitions P and Q of the interval [a, b], the
union PU @ is also a partition that refines both P and Q.



Darboux sums

Let P = {xo,x1,...,X,} be a partition of an interval [a, b,
where xo =a<x3 <---<x,=b. Let f:[a,b)] > R bea
bounded function.

Definition. The upper Darboux sum (or the upper
Riemann sum) of the function f over the partition P is the

number n
u(f,P)= ZMj(f)Aj,
j=1
where A; = —x_1 and M;(f) = supf([x-1,x]) for

Jj=1,2,...,n Likewise, the lower Darboux sum (or the
lower Riemann sum) of f over P is the number

L(f, P) = zn: mj(f) Aj,

where m;(f) = inf f([x;_1,x;]) for j=1,2,... n.



Properties of the Darboux sums

o L(f,P) < U(f,P).
Indeed, inf f(J) <supf(J) for any subinterval J C [a, b].

e U(f,P) <supf([a,b])-(b— a).

We have sup f(J) < sup f([a, b]) for any subinterval

J Cla,b]. Then supf(J)-|J] <supf([a,b])-|J]|, where |J|
is the length of J. Summing up over all subintervals J created
by the partition P, we obtain U(f, P) < supf([a, b]) - (b— a).

o inff([a b)) (b—a) < L(f,P).
The proof is analogous to the previous one.

Remark. Observe that sup f([a, b]) - (b —a) = U(f, Py) and
inf f([a, b]) - (b— a) = L(f, Py), where Py is the trivial
partition: Py = {a, b}.



Properties of the Darboux sums

o L(f,P)<L(f,Q) < U(f,Q) < U(f,P) forany
partition @ that refines P.

Every subinterval J created by the partition P is the union of
one or more subintervals Ji, J,, ..., Ji created by Q. Since
sup f(J;) <supf(J) for 1 < i<k, it follows that

Doy sup F(4) - 1] < sup F(J) - o5 || = sup £(J) - .
Summing up this inequality over all subintervals J, we obtain
U(f,Q) < U(f,P). The inequality L(f,P) < L(f,Q) is
proved in a similar way.

o L(f,P) < U(f,Q) for any partitions P and Q.

Since the partition PU @ refines both P and Q, it follows
from the above that L(f,P) < L(f,PU Q) and
U(f,PUQ) < U(f,Q). Besides, L(f,PUQ) < U(f,PUQ).



Upper and lower integrals

Suppose f : [a, b] — R is a bounded function.

Definition. The upper integral of f on [a, b], denoted
—b

b
/ f(x)dx or (U)/ f(x) dx, is the number
inf {U(f, P) | P is a partition of [a, b] }.

Similarly, the lower integral of f on [a, b], denoted

b b
/ f(x)dx or (L)/ f(x) dx, is the number

2 a3

sup {L(f,P) | P is a partition of [a, b] }.

Remark. Since —oo < L(f,P) < U(f, Q) < oo for all
partitions P and Q, it follows that

—o0 < (L)/b F(x) dx < (U)/b F(x) dx < +o0.



Integrability

Definition. A bounded function f :[a, b] = R is
called integrable (or Riemann integrable) on the
interval [a, b] if the upper and lower integrals of f
on [a, b] coincide. The common value is called the
integral of f on [a, b] (or over [a, b]) and denoted

/a " ) .

Theorem A bounded function f : [a,b] = R is
integrable on [a, b] if and only if for every ¢ > 0
there is a partition P. of [a, b] such that
U(f,P.) — L(f,P.) < e.



Proof of the theorem: The “if" part of the theorem follows
since

0< (U)/b F(x) dx — (L)/b f(x) dx < U(F, P) — L(f, P)

for any partition P. Conversely, assume that f is integrable
on [a,b]. Given £ > 0, there exists a partition P of [a, b]
such that

U(f, P) < /b F(x) dx + %

Also, there exists a partition Q of [a, b] such that

L(f, Q) > /b f(x) dx — g

Then U(f,P)— L(f,Q) <e. Now PUQ is a partition of
[a, b] that refines both P and Q. It follows that
U(f,PUQ) < U(f,P) and L(f,PUQ) > L(f,Q). Hence
U(f,PUQ)—L(f,PUQ) < U(f,P)— L(f,Q) <e.



Examples

e Constant function f(x) = c is integrable on any

b
interval [a, b] and / f(x)dx = c(b— a).

Indeed, for the trivial partition Py = {a, b} we obtain
U(f, Po) = c(b—a) = L(f, Py).

, 1 if x>0, .
e Step function f(x)—{O fx<0

1
integrable on [—1,1] and / f(x)dx = 1.
-1
For any ¢ € (0,1) consider a partition P. = {—1, —¢,¢,1}.
Then U(f,P.)=14¢ and L(f,P.)=1—c¢.



Examples
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0 if xeR\Q
is not integrable on any interval [a, b].

Indeed, any subinterval of [a, b] contains both rational and
irrational points. Therefore U(f,P)=b —a and
L(f,P) =0 for all partitions of [a, b].

1/q if x=p/q,
0 ifxeR\Q

is integrable on any interval [a, b].

e Riemann function f(x) = {

For any 6 > 0 the interval [a, b] contains only finitely many
points y1,¥s,...,yk such that f(y;) > J. Let P;s be a
partition of [a, b] that includes points y; £ /k. Then
L(f,Ps) =0 and U(f,Ps) <20+ d(b— a).



Continuity — integrability

Theorem If a function f : [a, b] — R is continuous on the
interval [a, b], then it is integrable on [a, b].

Proof: Since the function f is continuous, it is bounded on
[a, b]. Furthermore, f is uniformly continuous on [a, b.
Therefore for every ¢ > 0 there exists 0 > 0 such that

|x —y| <& implies |f(x) —f(y)| <e/(b—a) for all

X,y € [a, b]. Obviously, there exists a partition

P = {xo,x1,...,xn} of [a,b] that satisfies ||P| <. Let

J = [xj_1,x;] be an arbitrary subinterval of [a, b] created by
P. By the Extreme Value Theorem, there are points

x_, x4 € J such that f(x;) =supf(J) and f(x_) =inf f(J).
Since ||P]| < 0, the length of J satisfies |J| < . Then

Ixi —x_| <|J| <6 sothat |[f(xy)—f(x_)| <e/(b—a). It
follows that sup f(J) - [J| —inf f(J) - |J| < e|J|/(b— a).
Summing up the latter inequality over all subintervals J, we
obtain that U(f,P) — L(f,P) <e. Thus f is integrable.



Riemann sums
Definition. A Riemann sum of a function f : [a, b] = R
with respect to a partition P = {xg, x1,...,x,} of [a, b]
generated by samples t; € [x;_1, x;] is a sum

S(F.P.t) =3 F(1) (g = x1).

Remark. Note that the function f need not be bounded. If f
is bounded, then L(f,P) < S(f,P,t;)) < U(f,P) for any
choice of samples t;.

Definition. The Riemann sums S(f, P, t;) converge to a limit
I(f) as ||P|| — O if for every € > 0 there exists § > 0 such
that ||P|| < ¢ implies |S(f,P,t;) — I(f)| < e for any
partition P and choice of samples t;.

Theorem The Riemann sums S(f, P, t;) converge to a limit
I(f) as ||P|| — O if and only if the function f is integrable on

[a,b] and I(f) = [ f(x) dx.



