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Advanced Calculus I

Lecture 19:

Riemann sums.

Properties of integrals.



Darboux sums

Let P = {x0, x1, . . . , xn} be a partition of an interval [a, b],
where x0 = a < x1 < · · · < xn = b. Let f : [a, b] → R be a
bounded function.

Definition. The upper Darboux sum (or the upper

Riemann sum) of the function f over the partition P is the
number

U(f ,P) =

n
∑

j=1

Mj(f )∆j ,

where ∆j = xj − xj−1 and Mj(f ) = sup f ([xj−1, xj ]) for
j = 1, 2, . . . , n. Likewise, the lower Darboux sum (or the
lower Riemann sum) of f over P is the number

L(f ,P) =
n

∑

j=1

mj(f )∆j ,

where mj(f ) = inf f ([xj−1, xj ]) for j = 1, 2, . . . , n.



Upper and lower integrals

Suppose f : [a, b] → R is a bounded function.

Definition. The upper integral of f on [a, b], denoted
∫ b

a

f (x) dx or (U)

∫ b

a

f (x) dx , is the number

inf {U(f ,P) | P is a partition of [a, b] }.

Similarly, the lower integral of f on [a, b], denoted
∫ b

a

f (x) dx or (L)

∫ b

a

f (x) dx , is the number

sup {L(f ,P) | P is a partition of [a, b] }.

Remark. For any partitions P and Q of the interval [a, b],

L(f ,P) ≤ (L)

∫ b

a

f (x) dx ≤ (U)

∫ b

a

f (x) dx ≤ U(f ,Q).



Integrability

Definition. A bounded function f : [a, b] → R is
called integrable (or Riemann integrable) on the

interval [a, b] if the upper and lower integrals of f
on [a, b] coincide. The common value is called the

integral of f on [a, b] (or over [a, b]).

Theorem A bounded function f : [a, b] → R is
integrable on [a, b] if and only if for every ε > 0
there is a partition Pε of [a, b] such that

U(f ,Pε)− L(f ,Pε) < ε.

Theorem If a function is continuous on the
interval [a, b], then it is integrable on [a, b].



Riemann sums

Definition. A Riemann sum of a function f : [a, b] → R

with respect to a partition P = {x0, x1, . . . , xn} of [a, b]
generated by samples tj ∈ [xj−1, xj ] is a sum

S(f ,P, tj) =
∑n

j=1
f (tj) (xj − xj−1).

Remark. Note that the function f need not be bounded. If f
is bounded, then L(f ,P) ≤ S(f ,P, tj) ≤ U(f ,P) for any
choice of samples tj .

Definition. The Riemann sums S(f ,P, tj) converge to a limit
I (f ) as the norm ‖P‖ → 0 if for every ε > 0 there exists
δ > 0 such that ‖P‖ < δ implies |S(f ,P, tj)− I (f )| < ε for
any partition P and choice of samples tj .

Theorem The Riemann sums S(f ,P, tj) converge to a limit
I (f ) as ‖P‖ → 0 if and only if the function f is integrable on

[a, b] and I (f ) =
∫ b

a
f (x) dx .



Darboux sums and a Riemann sum
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Proof of the theorem (“only if”): Assume that the Riemann
sums S(f ,P, tj) converge to a limit I (f ) as ‖P‖ → 0. Given
ε > 0, we choose δ > 0 so that for every partition P with
‖P‖ < δ, we have |S(f ,P, tj)− I (f )| < ε for any choice of
samples tj . Let t̃j be a different set of samples for the same
partition P. Then |S(f ,P, t̃j)− I (f )| < ε. We can choose
the samples tj , t̃j so that f (tj) is arbitrarily close to
sup f ([xj−1, xj ]) while f (t̃j) is arbitrarily close to
inf f ([xj−1, xj ]). That way S(f ,P, tj) gets arbitrarily close to
U(f ,P) while S(f ,P, t̃j) gets arbitrarily close to L(f ,P).
Hence it follows from the above inequalities that
|U(f ,P)− I (f )| ≤ ε and |L(f ,P)− I (f )| ≤ ε. As a
consequence, U(f ,P)− L(f ,P) ≤ 2ε. In particular, the
function f is bounded. We conclude that f is integrable.

Let I =
∫ b

a
f (x) dx . The number I lies between L(f ,P) and

U(f ,P). The inequalities U(f ,P)− L(f ,P) ≤ 2ε and
|U(f ,P)− I (f )| ≤ ε imply that |I − I (f )| ≤ 3ε. As ε can be
arbitrarily small, I = I (f ).



Integration as a linear operation

Theorem 1 If functions f , g are integrable on an
interval [a, b], then the sum f + g is also

integrable on [a, b] and
∫

b

a

(

f (x) + g(x)
)

dx =

∫

b

a

f (x) dx +

∫

b

a

g(x) dx .

Theorem 2 If a function f is integrable on [a, b],
then for each α ∈ R the scalar multiple αf is also

integrable on [a, b] and
∫

b

a

αf (x) dx = α

∫

b

a

f (x) dx .



Proof of Theorems 1 and 2: Let I (f ) denote the integral of f
and I (g) denote the integral of g over [a, b]. The key
observation is that the Riemann sums depend linearly on a
function. Namely, S(f + g ,P, tj) = S(f ,P, tj) + S(g ,P, tj)
and S(αf ,P, tj) = α · S(f ,P, tj) for any partition P of [a, b]
and choice of samples tj . It follows that

|S(f + g ,P, tj)− I (f )− I (g)|

≤ |S(f ,P, tj)− I (f )|+ |S(g ,P, tj)− I (g)|,

|S(αf ,P, tj)− αI (f )| = |α| · |S(f ,P, tj)− I (f )|.

As ‖P‖ → 0, the Riemann sums S(f ,P, tj) and S(g ,P, tj)
get arbirarily close to I (f ) and I (g), respectively. Then
S(f + g ,P, tj) will be getting arbitrarily close to I (f ) + I (g)
while S(αf ,P, tj) will be getting arbitrarily close to αI (f ).
Thus I (f ) + I (g) is the integral of f + g and αI (f ) is the
integral of αf over [a, b].



Theorem If a function f is integrable on [a, b],
then it is integrable on each subinterval
[c , d ] ⊂ [a, b].

Proof: Since f is integrable on the interval [a, b], for any
ε > 0 there is a partition Pε of [a, b] such that
U(f ,Pε)− L(f ,Pε) < ε. Given a subinterval [c, d ] ⊂ [a, b],
let P ′

ε
= Pε ∪ {c, d} and Qε = P ′

ε
∩ [c, d ]. Then P ′

ε
is a

partition of [a, b] that refines Pε. Hence

U(f ,P ′

ε
)− L(f ,P ′

ε
) ≤ U(f ,Pε)− L(f ,Pε) < ε.

Since Qε is a partition of [c, d ] contained in P ′

ε
, it follows that

U(f ,Qε)− L(f ,Qε) ≤ U(f ,P ′

ε
)− L(f ,P ′

ε
) < ε.

We conclude that f is integrable on [c, d ].



Theorem If a function f is integrable on [a, b]
then for any c ∈ (a, b),

∫

b

a

f (x) dx =

∫

c

a

f (x) dx +

∫

b

c

f (x) dx .

Proof: Since f is integrable on the interval [a, b], it is also
integrable on subintervals [a, c] and [c, b]. Let P be a
partition of [a, c] and {tj} be some samples for that partition.
Further, let Q be a partition of [c, b] and {τi} be some
samples for that partition. Then P ∪Q is a partition of [a, b]
and {tj}∪{τi} are samples for it. The key observation is that

S(f ,P ∪ Q, {tj} ∪ {τi}) = S(f ,P, tj) + S(f ,Q, τi).

If ‖P‖ → 0 and ‖Q‖ → 0, then ‖P ∪Q‖ = max(‖P‖, ‖Q‖)
tends to 0 as well. Therefore the Riemann sums in the latter
equality will converge to the integrals

∫ b

a
f (x) dx ,

∫ c

a
f (x) dx ,

and
∫ b

c
f (x) dx , respectively.



Theorem If a function f is integrable on [a, b]
and f ([a, b]) ⊂ [A,B ], then for each continuous

function g : [A,B ] → R the composition g ◦ f is
also integrable on [a, b].

Corollary If functions f and g are integrable on
[a, b], then so is fg .

Proof: We have (f + g)2 = f 2 + g 2 + 2fg . Since f and g
are integrable on [a, b], so is f + g . Since h(x) = x2 is a
continuous function on R, the compositions h ◦ f = f 2,
h ◦ g = g 2, and h ◦ (f + g) = (f + g)2 are integrable on
[a, b]. Then fg = 1

2
(f + g)2 − 1

2
f 2 − 1

2
g 2 is integrable on

[a, b] as a linear combination of integrable functions.



Comparison Theorem for integrals

Theorem If functions f , g are integrable on [a, b]
and f (x) ≤ g(x) for all x ∈ [a, b], then

∫

b

a

f (x) dx ≤

∫

b

a

g(x) dx .

Proof: Since f ≤ g on the interval [a, b], it follows that
S(f ,P, tj) ≤ S(g ,P, tj) for any partition P of [a, b] and
choice of samples tj . As ‖P‖ → 0, the sum S(f ,P, tj) gets
arbitrarily close to the integral of f while S(g ,P, tj) gets
arbitrarily close to the integral of g . The theorem follows.

Corollary 1 If f is integrable on [a, b] and

f (x) ≥ 0 for x ∈ [a, b], then

∫

b

a

f (x) dx ≥ 0.



Corollary 2 If f is integrable on [a, b] and
m ≤ f (x) ≤ M for x ∈ [a, b], then

m(b − a) ≤

∫

b

a

f (x) dx ≤ M(b − a).

Corollary 3 If f is integrable on [a, b], then the
function |f | is also integrable on [a, b] and

∣

∣

∣

∣

∫

b

a

f (x) dx

∣

∣

∣

∣

≤

∫

b

a

|f (x)| dx .

Proof: The function |f | is the composition of f with a
continuous function g(x) = |x |. Therefore |f | is integrable on
[a, b]. Since −|f (x)| ≤ f (x) ≤ |f (x)| for x ∈ [a, b], the
Comparison Theorem for integrals implies that

−

∫ b

a

|f (x)| dx ≤

∫ b

a

f (x) dx ≤

∫ b

a

|f (x)| dx .



Integral with variable limit

Suppose f : [a, b] → R is an integrable function. For any

x ∈ [a, b] let F (x) =

∫ x

a

f (t) dt (we assume that F (a) = 0).

Theorem The function F is well defined and continuous on
[a, b].

Proof: Since the function f is integrable on [a, b], it is also
integrable on each subinterval of [a, b]. Hence the function F
is well defined on [a, b]. Besides, f is bounded: |f (t)| ≤ M
for some M > 0 and all t ∈ [a, b]. For any x , y ∈ [a, b],
x ≤ y , we have

∫ y

a
f (t) dt =

∫ x

a
f (t) dt +

∫ y

x
f (t) dt. It

follows that

|F (y )− F (x)| =

∣

∣

∣

∣

∫ y

x

f (t) dt

∣

∣

∣

∣

≤

∫ y

x

|f (t)| dt ≤ M |y − x |.

Thus F is a Lipschitz function on [a, b], which implies that F
is uniformly continuous on [a, b].



Sets of measure zero

Definition. A subset E of the real line R is said to have
measure zero if for any ε > 0 the set E can be covered by
countably many open intervals J1, J2, . . . such that
∑

∞

n=1
|Jn| < ε.

Examples. • Any countable set has measure zero.

Indeed, suppose E is a countable set and let x1, x2, . . . be a
list of all elements of E . Given ε > 0, let

Jn =
(

xn −
ε

2n+1
, xn +

ε

2n+1

)

, n = 1, 2, . . .

Then E ⊂ J1 ∪ J2 ∪ . . . and |Jn| = ε/2n for all n ∈ N so
that

∑

∞

n=1
|Jn| = ε.

• A nondegenerate interval [a, b] is not a set of measure
zero.

• There exist sets of measure zero that are of the same
cardinality as R.



Lebesgue’s criterion for Riemann integrability

Definition. Suppose P(x) is a property depending
on x ∈ S , where S ⊂ R. We say that P(x) holds

for almost all x ∈ S (or almost everywhere on
S) if the set {x ∈ S | P(x) does not hold } has

measure zero.

Theorem A function f : [a, b] → R is Riemann
integrable on the interval [a, b] if and only if f is
bounded on [a, b] and continuous almost

everywhere on [a, b].


