MATH 409
Advanced Calculus |

Lecture 21:
Review for Test 2.



Topics for Test 2

e Derivative of a function

e Differentiability theorems

e Derivative of the inverse function

e The mean value theorem

e Taylor's formula

e |'Hopital’s rule

e Darboux sums, Riemann sums, the Riemann integral
e Properties of integrals

e The fundamental theorem of calculus
e Integration by parts

e Change of the variable in an integral

Wade's book: 4.1-4.5, 5.1-5.3



Differentiability theorems

Theorem If functions f and g are differentiable at a point
a € R, then their sum f + g, difference f — g, and product
f - g are also differentiable at a. Moreover,

(f +g)'(a) = f'(a) + g'(a),
(f —g)(a) = f'(a) — g'(a),
(f-g)(a) = f'(a)g(a) + f(a)g'(a).
If, additionally, g(a) # 0 then the quotient f/g is also
differentiable at a and

f / ) — f'(a)g(a) — f(a)g'(a)
<g) (2) (g(a))? '

Theorem If a function f is differentiable at a point a € R
and a function g is differentiable at f(a), then the
composition g o f is differentiable at a. Moreover,

(gof)(a) =g'(f(a)) - '(a).




More theorems to know

Theorem If a function f is differentiable at a point ¢, then it
is continuous at c.

Rolle’s Theorem If a function f is continuous on a closed
interval [a, b], differentiable on the open interval (a, b), and
if f(a) = f(b), then f'(c) =0 for some c € (a, b).

Mean Value Theorem If a function f is continuous on
[a, b] and differentiable on (a, b), then there exists c € (a, b)
such that f(b) — f(a) = f'(c) (b— a).

Theorem Suppose that a function f is continuous on [a, b]
and differentiable on (a, b). Then the following hold.

(i) f is increasing on [a, b] if and only if >0 on (a,b).
(ii) f is decreasing on [a, b] if and only if f/ <0 on (a, b).
(i) f is constant on [a, b] if and only if ' =0 on (a, b).



Properties of integrals

Theorem |If functions f, g are integrable on an
interval [a, b], then the sum f + g is also
integrable on [a, b] and

/ab(f(x) +8(x)) dx = /abf(X) dX+/abg(x) dx.

Theorem If a function f is integrable on [a, b],
then for each o € R the scalar multiple af is also
integrable on [a, b] and

/abaf(x) dx = @/ab f(x) dx.



Properties of integrals

Theorem If a function f is integrable on [a, b]
then for any ¢ € (a, b),

/ab F(x) dx — / £(x) dx+/cb £(x) dx.

Theorem If functions f, g are integrable on [a, b]
and f(x) < g(x) for all x € [a, b], then

/ab f(x)dx < /abg(x) dx.



Fundamental theorem of calculus

Theorem If a function f is continuous on an
interval [a, b], then the function

F(x):/ f(t)dt, x € |a,b],
is continuously differentiable on [a, b]. Moreover,

F'(x) = f(x) for all x € [a, b].

Theorem If a function F is differentiable on [a, b]
and the derivative F’ is integrable on [a, b], then

/X F'(t)dt = F(x) — F(a) forall x € [a, b].



Sample problems for Test 2

Problem 1 (20 pts.) Prove the Chain Rule:
if a function f is differentiable at a point ¢ and
a function g is differentiable at f(c), then the
composition g o f is differentiable at ¢ and

(gof)(c)=2g'(f(c))-f'(c).

Problem 2 (25 pts.) Find the following limits of
functions:

(i) m(1+x)1/& (i) lim (1+x)Vx

X—+00

or 1y
(iii) XI_|>r61+x :



Sample problems for Test 2

Problem 3 (20 pts.) Find the limit of a sequence

1k+2k+_._+nk
- ki1 '

n=12,...,

Xn

where k is a natural number.



Sample problems for Test 2

Problem 4 (25 pts.) Find indefinite integrals and
evaluate definite integrals:

(i)/l)izxdx, (i) /Owsin2(2x) dx,

(iif) / og®xdx,  (iv) /0 v \/ﬁdx,

(v) /01 ﬁdx.



Sample problems for Test 2

Bonus Problem 5 (15 pts.) Suppose that a
function p: R — R is locally a polynomial, which
means that for every ¢ € R there exists € > 0 such
that p coincides with a polynomial on the interval
(c —e,c+¢). Prove that p is a polynomial.

Bonus Problem 6 (15 pts.) Show that a
function

1
— if 1
Flx) = exp( 1—x2>| x| <1,
0 if |x]>1

is infinitely differentiable on R.



Problem 2 Find the following limits of functions:
(i) lim (1+ x)V/x, (i) lim (1 4+ x)V/x
X—

X—400

The function f(x) = (1 + x)¥* is well defined on

(=1,0) U (0,00). Since f(x) >0 forall x> —1, x#0, a
function g(x) = log f(x) is well defined on (—1,0) U (0, c0)
as well. Forany x > —1, x #£ 0, we have

g(x) = log(1 + x)/* = x"tlog(1 + x). Hence g = hy/h,,
where the functions hi(x) = log(1 + x) and hy(x) = x are
continuously differentiable on (—1,00). Since

h1(0) = hy(0) = 0, it follows that )I(l_% hi(x) = Xllm) ha(x) = 0.
By I'Hépital’s Rule,

assuming the latter limit exists.



Since h;(0) = (1 + x)"!x=0 =1 and h5(0) =1, we obtain

H /
() kg maG) g
lim —<% = lim = = - =1.
x=0 hp(x)  x—=0 hy(x) )I(m) (x) 1

Further, lim h(x) = “T hy(x) = +00. At the same
X—>+00

X—r+00
time, hj(x) =(1+x)"' — 0 as x — +o0o while h} is
identically 1. Using I'Hopital’s Rule and a limit theorem, we
obtain fm AL (0)
h H im hy(x 0
TGN (O —- =0

x—+00 ha(Xx)  x—4o0 hy(x) N XETOO h,(x) 1

Since f = e&, a composition of g with a continuous function,
it follows that

- — lim e8%) — - ): 1_
fim £ = lim, &) = exp (Jim g0)) = ' = e,

lim f(x)= exp(xﬂrroog(x)) = =1

X——+00



Problem 3 Find the limit of a sequence

A R
Xn = nk+1 '

n=172

e
where k is a natural number.
The general element of the sequence can be represented as

k424 .4k 1 1N 1 /2\*1 k1
Xy = p e — ——'— — —+. . ._|_<_)
n n n n n n n

n

)

which shows that x, is a Riemann sum of the function

f(x) = x on the interval [0, 1] that corresponds to the
partition P, ={0,1/n,2/n,....(n—1)/n,1} and samples
ti=j/n, j=1,2,...,n. The norm of the partition is

|Pa|| = 1/n. Since ||P,|| — 0 as n — oo and the function f
is integrable on [0, 1], the Riemann sums x, converge to the

integral: 1 ka1 (L
: B X
lim x, = x“dx =
0

n—o0 k+1

o k+1



Problem 4 Find indefinite integrals and evaluate definite
integrals:

(i)/l)fxdx.

To find the indefinite integral of this rational function, we
expand it into the sum of a polynomial and a simple fraction:

x?2 x2—14+1 x2—1+ 1 ] 1
= = = —X — — .
1—x 1—x 1—x 1—x x—1

Since the domain of the function is (—oo,1) U (1, 00), the
indefinite integral has different representations on the intervals
(—00,1) and (1,00):

x2 —x%/2 —x —log(1 — x) + G, x < 1,
/ dx =

1—x —x%/2 —x —log(x — 1) + G, x > 1.



Problem 4 Find indefinite integrals and evaluate definite
integrals:

(i) /07T sin?(2x) dx.

To integrate this function, we use a trigonometric formula
1 — cos(2a) = 2sin’a and a new variable u = 4x:

™ ™1 — cos(4
/ sin?(2x) dx = / 1= cos(hx) dx
0 0 2

7r1_ 4 47r1_
:/ Mdmx):/ L-cosu .
o 8 o 8




Problem 4 Find indefinite integrals and evaluate definite
integrals:

(iii) / log® x dx.
To find this indefinite integral, we integrate by parts:
/Iog3x dx = x log® x — /xd(log3 x) = xlog® x — /x(log3 x) dx
_ 3 2 _ 3 2 2
= x log x—/3|og x dx = xlog” x — 3x log x—|—/xd(3|og X)
= xlog® x — 3xlog® x + /6|ogxdx
= xlog® x — 3xlog® x + 6x log x — /xd(6 log x)

:xlog3x—3x|og2x—|—6xlogx—/6dx

= xlog® x — 3xlog® x + 6x log x — 6x + C.



Problem 4 Find indefinite integrals and evaluate definite
integrals:

(iv) /01/2 ﬁ dx.

To integrate this function, we introduce a new variable

u=1-x>
1/2 1/2 AY;
X dx:—l/ de
0 \/].—X2 2 0 \/].—X2
1 1/2 1 1 3/4 1
o 1) = —/ —_ du
2Jo V1-x2 2)1 Vu



Problem 4 Find indefinite integrals and evaluate definite
integrals:

(v) /0 ﬁdx

To integrate this function, we use a substitution x = 2sint
(observe that x changes from 0 to 1 when t changes from 0 to

7/6):

7r/6

2smt

(2sint) 2cost

— dt = — dt
V4 —4sin’t o V4cos’t

7r/62 /6
:/ COStdt:/ 1dx = .
o 2cost 0 6




Bonus Problem 5 Suppose that a function

p: R — R is locally a polynomial, which means
that for every ¢ € R there exists £ > 0 such that p
coincides with a polynomial on the interval

(c —e,c+¢). Prove that p is a polynomial.

For any c € R let p. denote a polynomial and ¢, denote a
positive number such that p(x) = p.(x) for all
x € (c —ec,c+e.). Consider two sets

E. ={x>0]|p(x)# po(x)} and E_ ={x < 0| p(x) # po(x)}.

We are going to show that E, = E_ = (). This would imply
that p = pp on the entire real line.



Assume that the set £, is not empty. Clearly, E, is bounded
below. Hence d = inf E, is a well-defined real number. Note
that E, C [g9,00). Therefore d > ¢¢ > 0.

Observe that p(x) = po(x) for x € (0, d) and p(x) = pa(x) for
x € (d —eg4,d+¢€4). The interval (0, d) overlaps with the
interval (d —e4,d + e4). Hence py coincides with py on the
intersection (0,d) N (d —e4,d 4+ €4). Equivalently, the
difference py — po is zero on (0,d) N (d — e4,d + £4). Since
Pd — Po is a polynomial and any nonzero polynomial has only
finitely many roots, we conclude that p; — pg is identically 0.
Then the polynomials py and py are the same. It follows that
p(x) = po(x) for x € (0,d + e4) so that d # inf E,, a
contradiction. Thus E, = (). Similarly, we prove that the set
E_ is empty as well. Since E, = E_ = (), the function p
coincides with the polynomial py.



