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Lecture 22:
Improper Riemann integrals.



Improper Riemann integral

If a function f : [a, b] → R is integrable on [a, b], then the
function F (x) =

∫

x

a
f (t) dt is well defined and continuous on

[a, b]. In particular, F (c) → F (b) as c → b−, i.e.,
∫

b

a

f (x) dx = lim
c→b+

∫

c

a

f (x) dx .

Now suppose that f is defined on the semi-open interval
J = [a, b) and is integrable on any closed interval [c, d ] ⊂ J

(such a function is called locally integrable on J). Then all
integrals in the right-hand side are well defined and the limit
might exist even if f is not integrable on [a, b].

If this is the case, then f is called improperly integrable on J

and the limit is called the (improper) integral of f on [a, b).

Similarly, one defines improper integrability on the semi-open
interval (a, b].



Suppose a function f is locally integrable on a semi-open
interval J = [a, b) or (a, b]. Then there are two possible
obstructions for f to be integrable on [a, b]: (i) the function
f is not bounded on J , and (ii) the interval J is not bounded.

Examples.

• Function f (x) = 1/
√
x is improperly integrable on (0, 1].

∫ 1

0

1√
x
dx = lim

c→0+

∫ 1

c

1√
x
dx = lim

c→0+
2
√
x
∣

∣

1

x=c

= lim
c→0+

(2− 2
√
c) = 2.

• Function g(x) = x−2 is improperly integrable on [1,∞).
∫

∞

1

x−2 dx = lim
c→+∞

∫

c

1

x−2 dx = lim
c→+∞

−x−1
∣

∣

c

x=1

= lim
c→+∞

(1− c−1) = 1.



Properties of improper integrals

Since an improper Riemann integral is a limit of proper
integrals, the properties of improper integrals are analogous to
those of proper integrals (and derived using limit theorems).

Theorem Let f : [a, b) → R be a function integrable on any
closed interval [a1, b1] ⊂ [a, b). Given c ∈ (a, b), the
function f is improperly integrable on [c, b) if and only if it is
improperly integrable on [a, b). In the case of integrability,

∫

b

a

f (x) dx =

∫

c

a

f (x) dx +

∫

b

c

f (x) dx .

Sketch of the proof: For any d ∈ (c, b) we have the
following equality involving proper Riemann integrals:

∫

d

a

f (x) dx =

∫

c

a

f (x) dx +

∫

d

c

f (x) dx .

The theorem is proved by taking the limit as d → b−.



Theorem Suppose that a function f : (a, b) → R is
integrable on any closed interval [c, d ] ⊂ (a, b). Given a
number I ∈ R, the following conditions are equivalent:

(i) for some c ∈ (a, b) the function f is improperly integrable

on (a, c] and [c, b), and

∫

c

a

f (x) dx +

∫

b

c

f (x) dx = I ;

(ii) for every c ∈ (a, b) the function f is improperly integrable

on (a, c] and [c, b), and

∫

c

a

f (x) dx +

∫

b

c

f (x) dx = I ;

(iii) for every c ∈ (a, b) the function f is improperly

integrable on (a, c] and

∫

c

a

f (x) dx → I as c → b−;

(iv) for every c ∈ (a, b) the function f is improperly

integrable on [c, b) and

∫

b

c

f (x) dx → I as c → a+.



Improper integral: two singular points

Definition. A function f : (a, b) → R is called improperly
integrable on the open interval (a, b) if for some (and then
for any) c ∈ (a, b) it is improperly integrable on semi-open
intervals (a, c] and [c, b). The integral of f is defined by

∫

b

a

f (x) dx =

∫

c

a

f (x) dx +

∫

b

c

f (x) dx .

In view of the previous theorem, the integral does not depend
on c. It can also be computed as a repeated limit:

∫

b

a

f (x) dx = lim
d→b−

(

lim
c→a+

∫

d

c

f (x) dx
)

= lim
c→a+

(

lim
d→b−

∫

d

c

f (x) dx
)

.

Finally, the integral can be computed as a double limit (i.e.,
the limit of a function of two variables):

∫

b

a

f (x) dx = lim
c→a+
d→b−

∫

d

c

f (x) dx .



More properties of improper integrals

• If a function f is integrable on a closed interval [a, b] or
improperly integrable on one of the semi-open intervals [a, b)
and (a, b], then it is also improperly integrable on the open
interval (a, b) with the same value of the integral.

• If functions f , g are improperly integrable on (a, b), then
for any α, β ∈ R the linear combination αf + βg is also
improperly integrable on (a, b) and

∫

b

a

(

αf (x) + βg(x)
)

dx = α

∫

b

a

f (x) dx + β

∫

b

a

g(x) dx .

• Suppose a function f : (a, b) → R is locally integrable and
has an antiderivative F . Then f is improperly integrable on
(a, b) if and only if F (x) has finite limits as x → a+ and as
x → b−, in which case

∫

b

a

f (x) dx = lim
x→b−

F (x)− lim
x→a+

F (x).



Comparison Theorems for improper integrals

Theorem 1 Suppose that functions f , g are improperly
integrable on (a, b). If f (x) ≤ g(x) for all x ∈ (a, b), then

∫

b

a

f (x) dx ≤
∫

b

a

g(x) dx .

Theorem 2 Suppose that functions f , g are locally
integrable on (a, b). If the function g is improperly integrable
on (a, b) and 0 ≤ f (x) ≤ g(x) for all x ∈ (a, b), then f is
also improperly integrable on (a, b).

Theorem 3 Suppose that functions f , g , h are locally
integrable on (a, b). If the functions g , h are improperly
integrable on (a, b) and h(x) ≤ f (x) ≤ g(x) for all
x ∈ (a, b), then f is also improperly integrable on (a, b) and

∫

b

a

h(x) dx ≤
∫

b

a

f (x) dx ≤
∫

b

a

g(x) dx .



Examples

• Function f (x) = x−2 is not improperly
integrable on (0,∞).

Indeed, the antiderivative of the function f , which is
F (x) = −x−1, has a finite limit as x → +∞ but diverges to
infinity as x → 0+.

• Function g(x) = x−2 cos x is improperly
integrable on [1,∞).

We have −f (x) ≤ g(x) ≤ f (x) = x−2 for all x ≥ 1. Since
the function f is improperly integrable on [1,∞), it follows
that −f is also improperly integrable on [1,∞). By the
Comparison Theorem for improper integrals, the function g is
improperly integrable on [1,∞) as well.



Examples

• Function f (x) = e−x is improperly integrable on
[0,∞).

Indeed, the antiderivative of the function f , which is
F (x) = −e−x , has a finite limit as x → +∞.

• Function g(x) = e−x
2

is improperly integrable
on (−∞,∞).

We have 0 ≤ g(x) ≤ f (x) = e−x for all x ≥ 1. Since the
function f is improperly integrable on [0,∞), it follows that g
is improperly integrable on [1,∞). Since the function g is
even, g(−x) = g(x), it follows that g is also improperly
integrable on (−∞,−1]. Finally, g is properly integrable on
[−1, 1].



Examples

• Function f (x) = x−1 sin x is improperly
integrable on [1,∞).

To show improper integrability, we integrate by parts:
∫

c

1

x−1 sin x dx = −
∫

c

1

x−1 d(cos x)

= − x−1 cos x
∣

∣

c

x=1
+

∫

c

1

cos x d(x−1)

= cos 1− c−1 cos c −
∫

c

1

x−2 cos x dx .

Since the function g(x) = x−2 cos x is improperly integrable
on [1,∞) and c−1 cos c → 0 as c → +∞, it follows that f
is improperly integrable on [1,∞).



Absolute integrability

Definition. A function f : (a, b) → R is called absolutely
integrable on (a, b) if f is locally integrable on (a, b) and
the function |f | is improperly integrable on (a, b).

Theorem If a function f is absolutely integrable on (a, b),
then it is also improperly integrable on (a, b) and

∣

∣

∣

∣

∫

b

a

f (x) dx

∣

∣

∣

∣

≤
∫

b

a

|f (x)| dx .

Proof: Since |f | is improperly integrable on (a, b), so is
−|f |. Clearly, −|f (x)| ≤ f (x) ≤ |f (x)| for all x ∈ (a, b).
By the Comparison Theorems for improper integrals, the
function f is improperly integrable on (a, b) and

−
∫

b

a

|f (x)| dx ≤
∫

b

a

f (x) dx ≤
∫

b

a

|f (x)| dx .



Examples

• For any nonnegative function, the absolute

integrability is equivalent to improper integrability.

In particular, the function f1(x) = x−2 is absolutely integrable
on [1,∞) and is not on (0,∞). The function f2(x) = 1/

√
x

is absolutely integrable on (0, 1). The function f3(x) = e−x2

is absolutely integrable on (−∞,∞).

• Function f (x) = e−x
2

sin x is absolutely

integrable on (−∞,∞).

Indeed, the function f is locally integrable on (−∞,∞), a

function g(x) = e−x2 is improperly integrable on (−∞,∞),
and |f (x)| ≤ g(x) for all x ∈ R.



Counterexamples

• Function f (x) =

{

1 if x ∈ Q,

−1 if x ∈ R \Q is not

absolutely integrable on (0, 1).

Indeed, the function f is not locally integrable on (0, 1).
At the same time, the function |f | is constant and hence
(properly) integrable on (0, 1).

• Function f (x) = x−1 sin x is not absolutely integrable on
[1,∞).

For any n ∈ N,

∫ (n+1)π

nπ

|f (x)| dx ≥
∫ (n+1)π

nπ

| sin x |
(n + 1)π

dx

=
1

(n + 1)π

∫

π

0

sin x dx =
2

(n + 1)π
≥ 1

nπ
≥ 1

π

∫ (n+1)π

nπ

dx

x
.

It remains to notice that g(x) = 1/x is not improperly
integrable on [π,∞).


