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Lecture 23:
Convergence of infinite series.



Infinite series

Definition. Given a sequence {a,} of real numbers, an
expression a; +ax+---+a,+... or Y- a, is called an
infinite series with terms a,. The partial sum of order n of
the series is defined by s, =a; +a+---+ a,. If the
sequence {s,} converges to a limit s € R, we say that the
series converges to s or that s is the sum of the series and
write > a, =s. Otherwise the series diverges.

Theorem (Cauchy Criterion) An infinite series Y a,
converges if and only if for every € > 0 there exists N € N
such that m > n> N implies |a, + api1+ -+ am| < e.

Proof: Let {s,} be the sequence of partial sums. Then
an+ap1+ -+ am=5m—S,_1. Consequently, the
condition of the theorem is equivalent to the condition that
{sn} be a Cauchy sequence. As we know, a sequence is
convergent if and only if it is a Cauchy sequence.



Examples
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The partial sums s, of this series satisfy s, =1 — 27" for all
neN. Thus s, —+ 1 as n— oo.
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Since ﬁ = % — n}rl, the partial sums s, of this series
satisfy s, =1 — ﬁ Thus s, -1 as n — oo.

e > < (-1)"=-1+1-1+... diverges.

The partial sums s, satisfy s, = — 1 forodd nand s, =0
for even n. Hence the sequence {s,} has no limit.



Some properties of infinite series

Theorem (Divergence Test) If the terms of an infinite
series do not converge to zero, then the series diverges.

Theorem If Y > a, and Y . b, are convergent series,

then
ST (@ntb) =" atd. b
and
Z:O:l(ra,,) =r Zil an
for any r € R.

Theorem If Y ™° a, and ), b, are convergent series,
and a, < b, for all n € N, then

Z:il n < Z:il bn.



Example

e The geometric series >~ x" converges if

and only if |x| <1, in which case its sum is :
— X

In the case |x| > 1, the series fails the Divergence Test. For
any x # 1, the partial sums s, of the geometric series satisfy
1— Xn+1

1—x
In the case |x| <1, we obtain that s, — 1/(1 — x) as
n — oo.

Sp=1+x+x>+- - +x"=



Series with nonnegative terms

Suppose that a series Zi‘;l a, has nonnegative terms,
a, >0 for all n € N. Then the sequence of partial sums
Sp=ay+a,+ -+ a, is increasing. It follows that {s,}
converges to a finite limit if bounded and diverges to +oo
otherwise. In the latter case, we write Z:O:1 a, — 0o.

Theorem (Comparison Test) Suppose that a,, b, > 0 for
all ne N and a, < b, for large n. Then convergence of the
series > -, b, implies convergence of Y > a, while
Y% a, =00 implies > 7. b, = 0.

Proof: Since changing a finite number of terms does not
affect convergence of a series, it is no loss to assume that

a, < b, for all n € N. Then the partial sums s, = >, a
and t, = )",_, by satisfy s, <t, for all n. Consequently, if
S, — |00 as n — 0o, then also t, — 4+00 as n — oo.
Conversely, if {t,} is bounded, then so is {s,}.



Integral test

Theorem Suppose that a function f:[1,00) — R is
positive and decreasing on [1,00). Then
(i) a sequence {y,} is bounded, where

ynzf(1)+f(2)+---+f(n)—/nf(x)dx, n=12...

(ii) the series "> f(n) is convergent if and only if the
function f is improperly integrable on [1,00).

To prove the theorem, we need the following lemma.

Lemma Any monotone function g : [a, b] — R is integrable
on [a, b].

Idea of the proof: Any monotone function has only jump
discontinuities. Further, any function has at most countably
many jump discontinuities. Besides, a monotone function on
[a, b] is clearly bounded.



Proof of the theorem: The lemma implies that the function f
is integrable on every closed interval J = [a, b] C [1, c0).
Then for any partition P of the interval J the lower Darboux
sum L(f,P) and the upper Darboux sum U(f,P) satisfy

L(f,P) < /b f(x)dx < U(f, P).

Let P = {xo,x1,..., Xk}, where xo < x; < --+ < xk. Then
sup f([xj-1, x]) = f(x-1) and inf f([x_1, x]) = f(x;) since f
is decreasing. In the case J =[1,n], where n € N, and
P=1{1,2,...,n} we obtain L(f,P)=rF(2)+f(3)+...+f(n),
U(f,P)=1f(1)+f(2) +---+ f(n—1). Then the above
inequalities imply that 0 < f(n) <y, < f(1). Thus the
sequence {y,} is bounded.

Since f is positive, the series Y > f(n) either converges or
else it diverges to +o00. Likewise the improper integral

fl x) dx either converges or else it diverges to +oo. Since
the sequence {yn} is bounded, divergence of the series and
the integral imply each other.



Examples

~ 1
° anl — is convergent for any p > 1 and

divergent for any p < 1.

Forany p#1 we have [xPdx =x'"P/(1—p)+ C on the
interval [1,00). The antiderivative converges to a finite limit
at +o00 in the case p > 1 and diverges to +oc in the case

p < 1. Hence the function f(x) = x"" is improperly
integrable on [1,00) for p > 1 but not for p < 1. By the
Integral Test, the series is convergent for p > 1 and divergent
for 0 < p <1 If p<O0 then the Integral Test does not apply
since f is not decreasing. In this case, the series is divergent
since the terms 1/n” do not converge to 0 as n — co.



Examples

~ 1
e The harmonic series g . diverges.
n=1n

Indeed, ["x"'dx = logn — +o0 as n — co. By the
Integral Test, the series is divergent. Moreover, the sequence
Yn= 41 k1 —logn is bounded (actually, it is decreasing
and hence convergent).

00 1
° E ———— converges.
n=2n log“n

The antiderivative of f(x) = (xlog®x)™! on (1,00) is

d d(l 1
/ x2 _ / (ogx) _ LC
x log“x log“x log x

Since the antiderivative converges to a finite limit at 400, the
function f is improperly integrable on [2,00). By the Integral
Test, the series converges.




Examples

00 1
Zn:l 1 T n2 converges.

Indeed, 0 <1/(1+n?)<1/n* forall n€N. Since the
series Y. 1/n? is convergent, it remains to apply the
Comparison Test. Alternatively, we can use the Integral Test.

dx e
Indeed, / = arctanx + C converges to a finite limit
1+ x2

at +00 so that the function f(x) =1/(1+ x?) is improperly
integrable on [1, c0).

0 _n2
° E ) € converges.
n—

We have 0 < e™™ < e " forall ne N. The geometric series
>, e is convergent since 0 < e”! < 1. By the
Comparison Test, Ziil e s convergent as well.



