
MATH 409

Advanced Calculus I

Lecture 24:
Alternating series.

Absolute convergence of series.



Some tests of convergence

[Divergence Test] If the terms of an infinite series do not
converge to zero, then the series diverges.

[Cauchy Criterion] An infinite series
∑∞

n=1 an converges if
and only if for every ε > 0 there exists N ∈ N such that
m ≥ n ≥ N implies |an + an+1 + · · ·+ am| < ε.

[Comparison Test] Suppose that an, bn ≥ 0 for all n ∈ N

and an ≤ bn for large n. Then convergence of the series
∑∞

n=1 bn implies convergence of
∑∞

n=1 an while
∑∞

n=1 an = ∞ implies
∑∞

n=1 bn = ∞.

[Integral Test] Suppose that a function f : [1,∞) → R is
positive and decreasing on [1,∞). Then the series
∑∞

n=1 f (n) converges if and only if the function f is
improperly integrable on [1,∞).



Alternating Series Test

Definition. An infinite series
∑∞

n=1
an is called

alternating if any two neighboring terms have

different signs: anan+1 < 0 for all n ∈ N.

Theorem (Leibniz Criterion) If {an} is a
decreasing sequence of positive numbers and
an → 0 as n → ∞, then the alternating series

∞
∑

n=1

(−1)n+1an = a1 − a2 + a3 − a4 + . . .

converges.



Theorem (Leibniz Criterion) If {an} is a decreasing
sequence of positive numbers and an → 0 as n → ∞, then
the alternating series

∑∞

n=1(−1)n+1an = a1−a2+a3−a4+ . . .
converges.

Proof: Let sn =
∑n

k=1(−1)k+1ak be the partial sum of order
n of the series. For any n ∈ N we have

s2n = s2n−1 − a2n < s2n−1.

Since the sequence {an} is decreasing, we also have

s2n+1 = s2n−1 − a2n + a2n+1 ≤ s2n−1,

s2n+2 = s2n + a2n+1 − a2n+2 ≥ s2n.

Therefore s2n ≤ s2n+2 < s2n+1 ≤ s2n−1 for all n ∈ N. It
follows that a subsequence {s2n} is increasing, a subsequence
{s2n−1} is decreasing, and both are bounded. Hence both
subsequences are convergent. Since s2n−1 − s2n = a2n → 0 as
n → ∞, both subsequences converge to the same limit L.
Then L is the limit of the entire sequence {sn}.



Examples

•
∑∞

n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

The series converges due to the Alternating Series Test. One
can show that the sum is log 2.

•
∑∞

n=1

(−1)n

2n − 1
= −1 +

1

3
− 1

5
+

1

7
− . . .

After multiplying all terms by −1, the series satisfy all
conditions of the Alternating Series Test. It follows that the
series converges. One can show that the sum is −π/4.

•
∑∞

n=1

(−1)n+1 n

2n − 1
= 1− 2

3
+

3

5
− 4

7
+ . . .

The series is alternating and the terms decrease in absolute
value. However the absolute values of terms converge to 1/2
instead of 0. Hence the series diverges.



Absolute convergence

Definition. An infinite series
∑∞

n=1
an is said to

converge absolutely if
∑∞

n=1
|an| < ∞.

Theorem Any absolutely convergent series is

convergent.

Proof: Suppose that a series
∑∞

n=1 an converges absolutely,
i.e., the series

∑∞

n=1 |an| converges. By the Cauchy
Criterion, for every ε > 0 there exists N ∈ N such that

∣

∣|an|+ |an+1|+ · · ·+ |am|
∣

∣ < ε

for m ≥ n ≥ N. Then

|an + an+1 + · · ·+ am| ≤ |an|+ |an+1|+ · · ·+ |am| < ε

for m ≥ n ≥ N. According to the Cauchy Criterion, the
series

∑∞

n=1 an converges.



Examples

•
∑∞

n=1

1

n3
= 1 +

1

23
+

1

33
+

1

43
+ . . .

The series converges due to the Integral Test. Since it has
positive terms, it is absolutely convergent as well.

•
∑∞

n=1

sin n

n2
= sin 1 +

sin 2

4
+

sin 3

9
+

sin 4

16
+ . . .

Since | sin(n)/n2| ≤ 1/n2 and the series
∑∞

n=1 1/n
2

converges, this series converges absolutely due to the
Comparison Test.

•
∑∞

n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

The series converges (due to the Alternating Series Test), but
not absolutely as the series

∑∞

n=1 1/n diverges.



Ratio Test a.k.a. d’Alembert’s Criterion

Theorem Let {an} be a sequence of real numbers with
an 6= 0 for large n. Suppose that a limit

r = lim
n→∞

|an+1|
|an|

exists (finite or infinite).

(i) If r < 1, then
∑∞

n=1 an converges absolutely.

(ii) If r > 1, then
∑∞

n=1 an diverges.

Remark. In the case r = 1, the Ratio Test is inconclusive.
For example, consider a series

∑∞

n=1 n
−p, where p > 0.

Then

r = lim
n→∞

(n + 1)−p

n−p
= lim

n→∞

(

1− 1

n + 1

)p

= 1

for all p > 0. However the series converges for p > 1 and
diverges for 0 < p ≤ 1.



Theorem Let {an} be a sequence of real numbers with
an 6= 0 for large n. Suppose that a limit r = lim

n→∞
|an+1|/|an|

exists (finite or infinite).

(i) If r < 1, then
∑∞

n=1 an converges absolutely.

(ii) If r > 1, then
∑∞

n=1 an diverges.

Proof: If r > 1, then |an+1|/|an| > 1 for n large enough.
It follows that the sequence {|an|} is eventually increasing.
Then an 6→ 0 as n → ∞ so that the series

∑∞

n=1 an
diverges due to the Divergence Test.

In the case r < 1, choose some x ∈ (r , 1). Then
|an+1|/|an| < x for n large enough. Consequently,
|an+1|/xn+1 < |an|/xn for n large enough. That is, the
sequence {|an|/xn} is eventually decreasing. It follows that
this sequence is bounded. Hence |an| ≤ Cxn for some C > 0
and all n ∈ N. Since 0 < r < x < 1, the geometric series
∑∞

n=1 x
n converges. So does the series

∑∞

n=1 Cx
n. By the

Comparison Test, the series
∑∞

n=1 |an| converges as well.



Root Test

Theorem Let {an} be a sequence of real numbers and

r = lim sup
n→∞

n
√

|an|.

(i) If r < 1, then
∑∞

n=1 an converges absolutely.

(ii) If r > 1, then
∑∞

n=1 an diverges.

Proof: If r > 1, then supk≥n
k
√

|ak | ≥ r > 1 for all n ∈ N.
Therefore for any n ∈ N there exists k(n) ≥ n such that
|ak(n)|1/k(n) > 1. In particular, |ak(n)| > 1. It follows that
ak 6→ 0 as k → ∞ so that the series

∑∞

k=1 ak diverges due
to the Divergence Test.

In the case r < 1, choose some x ∈ (r , 1). Then

supk≥n
k
√

|ak | < x for some n ∈ N. This implies that

|ak | < xk for all k ≥ n. Since 0 < r < x < 1, the geometric
series

∑∞

k=1 x
k converges. By the Comparison Test, the

series
∑∞

k=1 |ak | converges as well.



Examples

•
∑∞

n=1

n

2n
=

1

2
+

2

4
+

3

8
+

4

16
+

5

32
+ . . .

If an = n/2n, then
an+1

an
=

n + 1

2n+1

( n

2n

)−1

=
n + 1

2n
=

1

2
+

1

2n
→ 1

2

as n → ∞. By the Ratio Test, the series converges.

•
∑∞

n=0

xn

n!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ . . . , x ∈ R.

In the case x = 0, we have a finite sum. In the case x 6= 0,
let an = xn/n!, n ∈ N. Then

|an+1|
|an|

=
|x |n+1

(n + 1)!

( |x |n
n!

)−1

=
|x |

n + 1
→ 0 as n → ∞.

By the Ratio Test, the series converges absolutely for all x 6= 0.



Examples

•
∑∞

n=1

(n!)2

(2n)!
=

(1!)2

2!
+

(2!)2

4!
+

(3!)2

6!
+ . . .

If an = (n!)2/(2n)!, then

an+1

an
=

(n + 1)2

(2n + 1)(2n + 2)
=

n + 1

2(2n + 1)
=

1 + n−1

4 + 2n−1
→ 1

4

as n → ∞. By the Ratio Test, the series converges.

•
∑∞

n=1

( n

n + 1

)

n
2

=
1

2
+
(2

3

)4

+
(3

4

)9

+ . . .

If an = (n/(n + 1))n
2
, then

n
√
an =

( n

n + 1

)n

=
(n + 1

n

)−n

=
(

1 +
1

n

)−n

→ 1

e

as n → ∞. By the Root Test, the series converges.


