MATH 409
Advanced Calculus |

Lecture 25:
Review for the final exam.



Topics for the final

Part I: Axiomatic model of the real numbers

Axioms of an ordered field
Completeness axiom

Archimedean principle

Principle of mathematical induction
Binomial formula

Countable and uncountable sets

Wade's book: 1.1-1.6, Appendix A



Topics for the final

Part Il: Limits and continuity

Limits of sequences

Limit theorems for sequences

Monotone sequences

Bolzano-Weierstrass theorem

Cauchy sequences

Limits of functions

Limit theorems for functions

Continuity of functions

Extreme value and intermediate value theorems
Uniform continuity

Wade’s book: 2.1-2.5, 3.1-3.4



Topics for the final

Part Ill-a: Differential calculus

Derivative of a function
Differentiability theorems
Derivative of the inverse function
The mean value theorem
Taylor's formula

I'Hépital’s rule

Wade's book: 4.1-4.5



Topics for the final

Part 1lI-b: Integral calculus

e Darboux sums, Riemann sums, the Riemann
integral

e Properties of integrals

e The fundamental theorem of calculus

e Integration by parts

e Change of the variable in an integral

e Improper integrals, absolute integrability

Wade's book: 5.1-5.4



Topics for the final

Part IV: Infinite series

e Convergence of series

e Comparison test and integral test
e Alternating series test

e Absolute convergence

e Ratio test and root test

Wade's book: 6.1-6.4



Theorems to know

Archimedean Principle For any real number
e > 0 there exists a natural number n such that
ne > 1.

Theorem The sets Z, Q, and N x N are
countable.

Theorem The set R is uncountable.



Theorems on limits

Squeeze Theorem If |im x, = I|m y, =a and
n—0o0 —00

x, < w, <y, for all sufficiently Iarge n, then

lim w, = a.

n—00

Theorem Any monotone sequence converges to a
limit if bounded, and diverges to infinity otherwise.

Theorem Any Cauchy sequence is convergent.



Theorems on derivatives

Theorem If functions f and g are differentiable at a point
a € R, then their sum f + g, difference f — g, and product
f - g are also differentiable at a. Moreover,

(f +g)(a) =f'(a) + &'(a),
(f —g)'(a) =f'(a) — g'(a),
(f-g)(a) = f'(a)g(a) + f(a)g'(a).

If, additionally, g(a) # 0 then the quotient f/g is also
differentiable at a and

\' () _ F(2)8(a) - F(a)g'(a)
<g) (a) (g(a))? '

Mean Value Theorem If a function f is continuous on
[a, b] and differentiable on (a, b), then there exists c € (a, b)
such that f(b) — f(a) = f'(c) (b — a).



Theorems on integrals

Theorem |If functions f, g are integrable on an
interval [a, b], then the sum f + g is also
integrable on [a, b] and

/ab(f(x)+g(x)) dx:/abf(x)dx+/abg(x)dx_

Theorem If a function f is integrable on [a, b]
then for any ¢ € (a, b),

/abf(x)dx:/acf(x)dx+/cbf(x)dx.



Theorems on series

Integral Test Suppose that f:[1,00) = R is
positive and decreasing on [1,00). Then the series
>, f(n) converges if and only if the function f is
improperly integrable on [1, c0).

Ratio Test Let {a,} be a sequence of reals with
a, # 0 for large n. Suppose that a limit

r = Ilm |an+1’
n—00 ‘an|

exists (finite or infinite).
(i) If r <1, then > °° a, converges absolutely.
(i) If r>1, then > 7, a, diverges.



Sample problems for the final exam

Problem 1 (20 pts.) Suppose Ei, Ey, E5, ...
are countable sets. Prove that their union

EfUE,UE3U ... is also a countable set.

Problem 2 (20 pts.) Find the following limits:

(i) lim log (ii) lim Vx—8

x=0 14 cot(x?)’ x—64 Yx — 4’
(iii) lim (1 n 5) . where ¢ € R.
n

n—:o0



Sample problems for the final exam

Problem 3 (20 pts.) Prove that the series

2n—1 3 5 7
n—|—1 X v X_ X_ . X
Z( Ve " aitm ot

converges to sinx for any x € R.

Problem 4 (20 pts.) Find an indefinite integral
and evaluate definite integrals:

O [V @ [T

(iii) /0 x*e ™ dx.




Sample problems for the final exam

Problem 5 (20 pts.) For each of the following
series, determine whether the series converges and
whether it converges absolutely:

(i) Z ”L +§ (i0) 2ﬁ+j!ncos",

—1)"
(iii) Z; I(7|og)n'




Sample problems for the final exam

Bonus Problem 6 (15 pts.) Prove that an
infinite product

ﬁn2+1_2 5 10 17
1l on2 14 9 16

. . 2
converges, that is, partial products [];_; %

converge to a finite limit as n — oc.



Problem 1. Suppose Ej, E,, E3,... are countable sets.
Prove that their union £ U E; U ... is also a countable set.

First we are going to show that the set N x N is countable.
Consider a relation < on the set N x N such that

(n1, m) < (my, my) if and only if either ny + ny < my + my or
else ny +ny, =m; + my and ny < my. It is easy to see that
< is a strict linear order. Moreover, for any pair

(my, my) € N x N there are only finitely many pairs (ny, n)
such that (nq, m) < (my, my). It follows that < is a
well-ordering. Now we define inductively a mapping

F :N — N x N such that for any n € N the pair F(n) is the
least (relative to <) pair different from F(k) for all natural
numbers k < n. It follows from the construction that F is
bijective. The inverse mapping F~! can be given explicitly by

n + np — 2)(/71 + np — 1)
2
Thus N x N is a countable set.

F‘l(nl, n2) = ( +ny, N, € N.



Now suppose that Ej, E,,... are countable sets. Then for
any n € N there exists a bijective mapping f,: N — E,.
Let us defineamap g: NxN— EUEU... by

g(ny, n) = f,,(n2). Obviously, g is onto.

Since the set N x N is countable, there exists a sequence

p1, P2, P3, ... that forms a complete list of its elements. Then
the sequence g(p1),g(p2),g(ps3),... contains all elements of
the union E; U E, U E3U ... Although the latter sequence
may include repetitions, we can choose a subsequence
{g(pn,)} in which every element of the union appears exactly
once. Note that the subsequence is infinite since each of the
sets Eq, Es, ... is infinite.

Now the map h: N — EUE,UE3U... defined by
h(k) = g(pn,), k=1,2,..., is a bijection.



Problem 2. Find the following limits:

(i) ||m Iogm

The function f(x) = log can be represented as

1 + cot(x?)
the composition of 4 functions: f(x) = x2, fh(y) = coty,
f3(z) = (1 +2z)7t, and f4(u) = logu.

Since the function f is continuous, we have
Iirr}) fi(x) = f(0) = 0. Moreover, fi(x) >0 for x # 0.
X—

Since I|m+coty +o00, it follows that %(fi(x)) — +oo as
y—>

x — 0.

Further, f3(z) - 0+ as z — 400 and f4(u) - —o0 as
u— 0+ Finally, f(x) = fi(B(H(A(x)))) — —cc as x — 0.



Problem 2. Find the following limits:
(i) lim Vx—8
x—64 \/_ 4

Consider a function u(x) = x*/6 defined on (0,00). Since
this function is continuous at 64 and u(64) = 2, we obtain

VX=8 (Ul 8
X—>64 \/_ — 4 x—64 (U(X))2 — 4

im Y8 =2 2y +4)
y=2y? =4 ym2 o (y—2)(y +2)

v 4+2y+4  y 42y +4

= = 3.
y—2 _y—|—2 y—|—2

y=2




Problem 2. Find the following limits:

(i) lim (1+ 5)", where ¢ € R.
n—o00 n

Let a,=(1+c¢/n)", n=1,2,... For n large enough, we
have 1+ c¢/n >0 so that a, > 0. Then

c> _ log(1+ cx)
n) X

Ioga,,:log<1+£) :nlog<1+ :
n x=1/n

Since 1/n— 0 as n — oo and
. log(1+ cx) / c
lim —— = = (log(1 = =
0 X (log(1 + x)) x=0 14+ cox|,_, “

we obtain that loga, — ¢ as n — oco. Therefore
a, = €% 5 e as n — 0.



Problem 3. Prove that the series
00 2n-1 3 5 7

X X X X
{1 SR S S A

converges to sinx for any x € R.

The function f(x) = sin x is infinitely differentiable on R.
According to Taylor's formula, for any x,xg € R and n € N,

(X £ (x
f(x) = f(x0) + (1,0)(x_x0) +o n(l ) (x—x0)" + Rafx, 30),
f(n—i—l) 0
where R,(x,xp) = Fi)')(x — xp)"t! for some
0 = 0(x,x0) between x and xp. Since f’(x) = cosx and
f"(x) = —sinx = —f(x) for all x € R, it follows that

[F(+D(9)] <1 forall n€ N and 6 € R. Further, one
derives that R,(x,xp) — 0 as n — oco. Thus we obtain an
expansion of sinx into a series. In the case x9 = 0, this is
the required series (up to zero terms).



Problem 4. Find an indefinite integral and evaluate definite
integrals:

() /\/l—i-

To find this integral, we change the variable twice. First

/V” d-/\/r dx—/\/rdu,

where u = y/x. Secondly, we introduce a variable
w=+/1++/u. Then u=(w?—1)? so that

du = ((w? — 1)2), dw =2(w? —1) - 2w dw = (4w? — 4w) dw.
Consequently,

/mdu:/wdu:/(4w4—4wz)dw

_ﬂ 5_ﬂ 3 _ﬂ 1/45/2_ﬂ 1/4\3/2
=W 3w +C_5(1+x ) 3(1+x )T+ C



Problem 4. Find an indefinite integral and evaluate definite
integrals:

(')/ 2+9

To evaluate this definite integral, we use linearity of the
integral and a substitution x = 3u:

V3 V3 V3
/ all +6d —/ 1-— 3 dx:/ 1 dx
o X249 0 x2+9 0
— dx =vV3— ———d(3
/0 X219 /0 (Bu)2 19 (3u)

1/V3 1
:\/5—/ 5 du=+/3— arctanu‘l/_ﬁ:\/g—z.
0 u +1 u=0




Problem 4. Find an indefinite integral and evaluate definite
integrals:

(iii) / x*e ™™ dx.
0
To evaluate the improper integral, we integrate by parts twice:
/ xPe ¥ dx = —/ x*(e™) dx = —/ x*d(e™)
0 0 0
= —x"e | +/ e *d(x?) = / e *(x?) dx
0 0
:/ 2xe * dx = —/ 2x(e7) dx = —/ 2xd(e™)
0 0 0

= —2xe_x}go+/ e d(2x):/ 2e * dx
0 0



Problem 5. For each of the following series, determine if the
series converges and if it converges absolutely:

Vn+1 \/_—|—2 cosn
()Zm+f()2 ()Zn,ogn.

The first series diverges since

Z Vn+1l—+/n Z Z 1 o
Vntl+y/no \/n+ +yn)? a5 An+1)
The second series can be represented as > (b, + ¢, cos n),
where b, = /n/n! and ¢, =2"/n! for all n € N. The series
S>> b, and > ¢, both converge (due to the Ratio
Test), and so does > °° (b, + ¢,). Since |b, + ¢,cosn| <
b, + ¢, for all n € N, the series anl(bn + ¢, cosn)
converges absolutely due to the Comparison Test.

Finally, the third series converges (due to the Alternating
Series Test), but not absolutely (due to the Integral Test).



