
MATH 409

Advanced Calculus I

Lecture 25:
Review for the final exam.



Topics for the final

Part I: Axiomatic model of the real numbers

• Axioms of an ordered field

• Completeness axiom

• Archimedean principle

• Principle of mathematical induction

• Binomial formula

• Countable and uncountable sets

Wade’s book: 1.1–1.6, Appendix A



Topics for the final

Part II: Limits and continuity

• Limits of sequences
• Limit theorems for sequences

• Monotone sequences
• Bolzano-Weierstrass theorem

• Cauchy sequences
• Limits of functions

• Limit theorems for functions
• Continuity of functions
• Extreme value and intermediate value theorems

• Uniform continuity

Wade’s book: 2.1–2.5, 3.1–3.4



Topics for the final

Part III-a: Differential calculus

• Derivative of a function

• Differentiability theorems

• Derivative of the inverse function

• The mean value theorem

• Taylor’s formula

• l’Hôpital’s rule

Wade’s book: 4.1–4.5



Topics for the final

Part III-b: Integral calculus

• Darboux sums, Riemann sums, the Riemann
integral

• Properties of integrals

• The fundamental theorem of calculus

• Integration by parts

• Change of the variable in an integral

• Improper integrals, absolute integrability

Wade’s book: 5.1–5.4



Topics for the final

Part IV: Infinite series

• Convergence of series

• Comparison test and integral test

• Alternating series test

• Absolute convergence

• Ratio test and root test

Wade’s book: 6.1–6.4



Theorems to know

Archimedean Principle For any real number
ε > 0 there exists a natural number n such that

nε > 1.

Theorem The sets Z, Q, and N× N are

countable.

Theorem The set R is uncountable.



Theorems on limits

Squeeze Theorem If lim
n→∞

xn = lim
n→∞

yn = a and

xn ≤ wn ≤ yn for all sufficiently large n, then
lim
n→∞

wn = a.

Theorem Any monotone sequence converges to a
limit if bounded, and diverges to infinity otherwise.

Theorem Any Cauchy sequence is convergent.



Theorems on derivatives

Theorem If functions f and g are differentiable at a point
a ∈ R, then their sum f + g , difference f − g , and product
f · g are also differentiable at a. Moreover,

(f + g)′(a) = f ′(a) + g ′(a),

(f − g)′(a) = f ′(a)− g ′(a),

(f · g)′(a) = f ′(a)g(a) + f (a)g ′(a).

If, additionally, g(a) 6= 0 then the quotient f /g is also
differentiable at a and

(

f

g

)′

(a) =
f ′(a)g(a)− f (a)g ′(a)

(g(a))2
.

Mean Value Theorem If a function f is continuous on
[a, b] and differentiable on (a, b), then there exists c ∈ (a, b)
such that f (b)− f (a) = f ′(c) (b − a).



Theorems on integrals

Theorem If functions f , g are integrable on an
interval [a, b], then the sum f + g is also

integrable on [a, b] and
∫

b

a

(

f (x) + g(x)
)

dx =

∫

b

a

f (x) dx +

∫

b

a

g(x) dx .

Theorem If a function f is integrable on [a, b]

then for any c ∈ (a, b),
∫

b

a

f (x) dx =

∫

c

a

f (x) dx +

∫

b

c

f (x) dx .



Theorems on series

Integral Test Suppose that f : [1,∞) → R is

positive and decreasing on [1,∞). Then the series
∑∞

n=1
f (n) converges if and only if the function f is

improperly integrable on [1,∞).

Ratio Test Let {an} be a sequence of reals with
an 6= 0 for large n. Suppose that a limit

r = lim
n→∞

|an+1|
|an|

exists (finite or infinite).

(i) If r < 1, then
∑∞

n=1
an converges absolutely.

(ii) If r > 1, then
∑∞

n=1
an diverges.



Sample problems for the final exam

Problem 1 (20 pts.) Suppose E1,E2,E3, . . .

are countable sets. Prove that their union
E1 ∪ E2 ∪ E3 ∪ . . . is also a countable set.

Problem 2 (20 pts.) Find the following limits:

(i) lim
x→0

log
1

1 + cot(x2)
, (ii) lim

x→64

√
x − 8

3
√
x − 4

,

(iii) lim
n→∞

(

1 +
c

n

)n

, where c ∈ R.



Sample problems for the final exam

Problem 3 (20 pts.) Prove that the series
∞
∑

n=1

(−1)n+1 x2n−1

(2n − 1)!
= x − x3

3!
+

x5

5!
− x7

7!
+ . . .

converges to sin x for any x ∈ R.

Problem 4 (20 pts.) Find an indefinite integral
and evaluate definite integrals:

(i)

∫

√

1 + 4
√
x

2
√
x

dx , (ii)

∫

√
3

0

x2 + 6

x2 + 9
dx ,

(iii)

∫ ∞

0

x2e−x dx .



Sample problems for the final exam

Problem 5 (20 pts.) For each of the following
series, determine whether the series converges and

whether it converges absolutely:

(i)
∞
∑

n=1

√
n + 1−√

n√
n + 1 +

√
n
, (ii)

∞
∑

n=1

√
n + 2n cos n

n!
,

(iii)
∞
∑

n=2

(−1)n

n log n
.



Sample problems for the final exam

Bonus Problem 6 (15 pts.) Prove that an
infinite product

∞
∏

n=1

n2 + 1

n2
=

2

1
· 5
4
· 10
9

· 17
16

· . . .

converges, that is, partial products
∏

n

k=1

k
2+1

k2

converge to a finite limit as n → ∞.



Problem 1. Suppose E1,E2,E3, . . . are countable sets.
Prove that their union E1 ∪ E2 ∪ . . . is also a countable set.

First we are going to show that the set N× N is countable.
Consider a relation ≺ on the set N× N such that
(n1, n2) ≺ (m1,m2) if and only if either n1 + n2 < m1 +m2 or
else n1 + n2 = m1 +m2 and n1 < m1. It is easy to see that
≺ is a strict linear order. Moreover, for any pair
(m1,m2) ∈ N× N there are only finitely many pairs (n1, n2)
such that (n1, n2) ≺ (m1,m2). It follows that ≺ is a
well-ordering. Now we define inductively a mapping
F : N → N× N such that for any n ∈ N the pair F (n) is the
least (relative to ≺) pair different from F (k) for all natural
numbers k < n. It follows from the construction that F is
bijective. The inverse mapping F−1 can be given explicitly by

F−1(n1, n2) =
(n1 + n2 − 2)(n1 + n2 − 1)

2
+ n1, n1, n2 ∈ N.

Thus N× N is a countable set.



Now suppose that E1,E2, . . . are countable sets. Then for
any n ∈ N there exists a bijective mapping fn : N → En.
Let us define a map g : N× N → E1 ∪ E2 ∪ . . . by
g(n1, n2) = fn1(n2). Obviously, g is onto.

Since the set N× N is countable, there exists a sequence
p1, p2, p3, . . . that forms a complete list of its elements. Then
the sequence g(p1), g(p2), g(p3), . . . contains all elements of
the union E1 ∪ E2 ∪ E3 ∪ . . . Although the latter sequence
may include repetitions, we can choose a subsequence
{g(pnk )} in which every element of the union appears exactly
once. Note that the subsequence is infinite since each of the
sets E1,E2, . . . is infinite.

Now the map h : N → E1 ∪ E2 ∪ E3 ∪ . . . defined by
h(k) = g(pnk ), k = 1, 2, . . . , is a bijection.



Problem 2. Find the following limits:

(i) lim
x→0

log
1

1 + cot(x2)
.

The function f (x) = log
1

1 + cot(x2)
can be represented as

the composition of 4 functions: f1(x) = x2, f2(y ) = cot y ,
f3(z) = (1 + z)−1, and f4(u) = log u.

Since the function f1 is continuous, we have
lim
x→0

f1(x) = f1(0) = 0. Moreover, f1(x) > 0 for x 6= 0.

Since lim
y→0+

cot y = +∞, it follows that f2(f1(x)) → +∞ as

x → 0.

Further, f3(z) → 0+ as z → +∞ and f4(u) → −∞ as
u → 0+. Finally, f (x) = f4(f3(f2(f1(x)))) → −∞ as x → 0.



Problem 2. Find the following limits:

(ii) lim
x→64

√
x − 8

3
√
x − 4

.

Consider a function u(x) = x1/6 defined on (0,∞). Since
this function is continuous at 64 and u(64) = 2, we obtain

lim
x→64

√
x − 8

3
√
x − 4

= lim
x→64

(u(x))3 − 8

(u(x))2 − 4

= lim
y→2

y 3 − 8

y 2 − 4
= lim

y→2

(y − 2)(y 2 + 2y + 4)

(y − 2)(y + 2)

= lim
y→2

y 2 + 2y + 4

y + 2
=

y 2 + 2y + 4

y + 2

∣

∣

∣

∣

y=2

= 3.



Problem 2. Find the following limits:

(iii) lim
n→∞

(

1 +
c

n

)n

, where c ∈ R.

Let an = (1 + c/n)n, n = 1, 2, . . . For n large enough, we
have 1 + c/n > 0 so that an > 0. Then

log an = log
(

1 +
c

n

)n

= n log
(

1 +
c

n

)

=
log(1 + cx)

x

∣

∣

∣

∣

x=1/n

.

Since 1/n → 0 as n → ∞ and

lim
x→0

log(1 + cx)

x
=

(

log(1 + cx)
)′
∣

∣

∣

x=0
=

c

1 + cx

∣

∣

∣

∣

x=0

= c,

we obtain that log an → c as n → ∞. Therefore
an = e log an → ec as n → ∞.



Problem 3. Prove that the series
∞
∑

n=1

(−1)n+1 x2n−1

(2n − 1)!
= x − x3

3!
+

x5

5!
− x7

7!
+ . . .

converges to sin x for any x ∈ R.

The function f (x) = sin x is infinitely differentiable on R.
According to Taylor’s formula, for any x , x0 ∈ R and n ∈ N,

f (x) = f (x0) +
f ′(x0)

1!
(x−x0) + · · ·+ f (n)(x0)

n!
(x−x0)

n + Rn(x , x0),

where Rn(x , x0) =
f (n+1)(θ)

(n + 1)!
(x − x0)

n+1 for some

θ = θ(x , x0) between x and x0. Since f ′(x) = cos x and
f ′′(x) = − sin x = −f (x) for all x ∈ R, it follows that
|f (n+1)(θ)| ≤ 1 for all n ∈ N and θ ∈ R. Further, one
derives that Rn(x , x0) → 0 as n → ∞. Thus we obtain an
expansion of sin x into a series. In the case x0 = 0, this is
the required series (up to zero terms).



Problem 4. Find an indefinite integral and evaluate definite
integrals:

(i)

∫

√

1 + 4
√
x

2
√
x

dx .

To find this integral, we change the variable twice. First
∫

√

1 + 4
√
x

2
√
x

dx =

∫

√

1 + 4
√
x (

√
x)′ dx =

∫

√

1 +
√
u du,

where u =
√
x . Secondly, we introduce a variable

w =
√

1 +
√
u. Then u = (w 2 − 1)2 so that

du =
(

(w 2 − 1)2
)′
dw = 2(w 2 − 1) · 2w dw = (4w 3 − 4w) dw .

Consequently,
∫

√

1 +
√
u du =

∫

w du =

∫

(4w 4 − 4w 2) dw

=
4

5
w 5 − 4

3
w 3 + C =

4

5

(

1 + x1/4
)5/2 − 4

3

(

1 + x1/4
)3/2

+ C .



Problem 4. Find an indefinite integral and evaluate definite
integrals:

(ii)

∫

√
3

0

x2 + 6

x2 + 9
dx .

To evaluate this definite integral, we use linearity of the
integral and a substitution x = 3u:
∫

√
3

0

x2 + 6

x2 + 9
dx =

∫

√
3

0

(

1− 3

x2 + 9

)

dx =

∫

√
3

0

1 dx

−
∫

√
3

0

3

x2 + 9
dx =

√
3−

∫

√
3/3

0

3

(3u)2 + 9
d(3u)

=
√
3−

∫ 1/
√
3

0

1

u2 + 1
du =

√
3− arctan u

∣

∣

1/
√
3

u=0
=

√
3− π

6
.



Problem 4. Find an indefinite integral and evaluate definite
integrals:

(iii)

∫ ∞

0

x2e−x dx .

To evaluate the improper integral, we integrate by parts twice:
∫ ∞

0

x2e−x dx = −
∫ ∞

0

x2(e−x)′ dx = −
∫ ∞

0

x2 d(e−x)

= −x2e−x
∣

∣

∞

0
+

∫ ∞

0

e−x d(x2) =

∫ ∞

0

e−x(x2)′ dx

=

∫ ∞

0

2xe−x dx = −
∫ ∞

0

2x(e−x)′ dx = −
∫ ∞

0

2x d(e−x)

= −2xe−x
∣

∣

∞

0
+

∫ ∞

0

e−x d(2x) =

∫ ∞

0

2e−x dx

= −2e−x |∞0 = 2.



Problem 5. For each of the following series, determine if the
series converges and if it converges absolutely:

(i)

∞
∑

n=1

√
n+1−√

n√
n+1 +

√
n
, (ii)

∞
∑

n=1

√
n + 2n cos n

n!
, (iii)

∞
∑

n=2

(−1)n

n log n
.

The first series diverges since
∞
∑

n=1

√
n+1−√

n√
n+1 +

√
n
=

∞
∑

n=1

1
(√

n+1 +
√
n
)2 >

∞
∑

n=1

1

4(n+1)
= +∞.

The second series can be represented as
∑∞

n=1(bn + cn cos n),
where bn =

√
n/n! and cn = 2n/n! for all n ∈ N. The series

∑∞
n=1 bn and

∑∞
n=1 cn both converge (due to the Ratio

Test), and so does
∑∞

n=1(bn + cn). Since |bn + cn cos n| ≤
bn + cn for all n ∈ N, the series

∑∞
n=1(bn + cn cos n)

converges absolutely due to the Comparison Test.

Finally, the third series converges (due to the Alternating
Series Test), but not absolutely (due to the Integral Test).


