MATH 409-501/503 Fall 2013

Sample problems for Test 2: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Prove the Chain Rule: if a function f is differentiable at a point ¢
and a function g is differentiable at f(c), then the composition g o f is differentiable at ¢ and

(go f)(c) =g (fc)- f(c).

Since the function f is differentiable at the point ¢, the domain of f contains an open interval
Iy = (¢ — dg,c + dp) for some §y > 0. Since g is differentiable at f(c), the domain of g contains an
open interval J = (f(c) — €0, f(c) + €o) for some gy > 0. The differentiability of f at ¢ implies that
f is continuous at that point. Hence there exists d; € (0,dp) such that |f(x) — f(c)| < g9 whenever
|z — ¢| < 1. Then the composition g o f is well defined on the interval Iy = (¢ — d1,¢ + d1). Consider
aset E={zecl| f(x)# f(c)}. For any z € E,

(9o f)(z) = (g0 f)le) _ 9(f(2)) — g(f(c)  flz)— flc)

x—c f(x) = f(c) T—c
As x — ¢ within the subset E, we have f(z) — f(c) while f(z) # f(c). Therefore

i U @) —9(f() _ . 9(y) —9(f(c))
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=4 (f(c)).

Consequently,

o (82 @) = (92 (0

T—cC T —c
zel

=g (f(c) - f'(o).

In the case f(x) # f(c) for all x in a sufficiently small punctured neighborhood of ¢, the restriction
x € F in the above limit is redundant and we are done. Otherwise we also need to consider the limit
as x — ¢ within the complement of E. Notice that g(f(z)) — g(f(c)) = f(x) — f(c) =0 for all = ¢ E.

Hence
f @0 N@) — (o) L @)= fle) _
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In particular, we have f’(¢) = 0 in this case so that

1 50 D@ — (g0 £)(e)
. e

=g (f(c) - f'(o).

Problem 2 (25 pts.) Find the following limits of functions:
(i) lim (1 + )V, (i) lim (1 +a)Ye, (iii) lim z®.
T— x

—400 z—0+



The function f(x) = (1 + x)'/* is well defined on (—1,0) U (0,00). Since f(z) > 0 for all z > —1,
x # 0, a function g(x) = log f(x) is well defined on (—1,0)U (0, 0) as well. For any = > —1, x # 0, we
have g(x) = log(1 + x)'/% = 2= log(1 + z). Hence g = hy/hs, where the functions hy(x) = log(1 + )
and ho(x) = x are continuously differentiable on (—1,00). Since h1(0) = ho(0) = 0, it follows that
iig}) hi(z) = }:li)l%) ha(xz) = 0. By 'Hopital’s Rule,

o hi(z) L hy(x)
1 =1
150 ha(z) a0 Ry (z)

assuming the latter limit exists. Since 2} (0) = (1 + z)7!|,—0 = 1 and h%(0) = 1, we obtain

. /
Ch(e) M) ImhE
lim = lim == =_—=1.
a—0 ho(z)  2—0 hi(x) hr% hiy(z) 1
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Further, 11}141_1 hi(x) = 2141_1 ho(z) = +00. At the same time, b} (z) = (1+2)"! = 0 as z — 400

while A is identically 1. Using ’'H6pital’s Rule and a limit theorem, we obtain

: /
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Since f = e9, a composition of g with a continuous function, it follows that

1.

1 = 1 g(x) — ( 1 ) — 1 = 1 = 1 — 0
f 1) =l o) = oxp (o) = <.t (o) =exp (tim o)) =
Now let us consider a function F(z) = 2%, > 0. Since F takes positive values, a function
G(x) = log F(z) is well defined on (0,00). We have G(x) = log(x®) = zlogz for all z > 0 so that
G = H;/H,, where Hy(z) = logx and Hy(x) = ! are differentiable functions on (0, 00). We observe
that h%l+ Hy(z) = —o0 and lir(r)1+ Hy(z) = +oo. By I'Hopital’s Rule,
T— z—

H H! 1 ! -1
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Consequently,
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Problem 3 (20 pts.) Find the limit of a sequence

IR R i
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where k is a natural number.
The general element of the sequence can be represented as
I R
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which shows that x,, is a Riemann sum of the function f(x) = z* on the interval [0, 1] that corresponds
to the partition P, = {0,1/n,2/n,...,(n —1)/n,1} and samples t; = j/n, j =1,2,...,n. The norm
of the partition is || P,|| = 1/n. Since |P,|| — 0 as n — oo and the function f is integrable on [0, 1],
the Riemann sums z,, converge to the integral:

1 . xk—i—l
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Problem 4 (25 pts.) Find indefinite integrals and evaluate definite integrals:

(i) / v de, (i) /0 Cen?(20)dz, (i) / log® z dz,

1—=x

1/2 T

1
L s, (v)/ N

To find the indefinite integral of a rational function y(z) = 22/(1 — ), we expand it into the sum
of a polynomial and a simple fraction:

(iv)

x? 2—1+1 22-1 1 (x —1)(z+1) 1 1
1—=x 1—=x 1—=x 11—z 1—=x 1—=x r—1

Since the domain of the function y is (—o0,1) U (1, 00), the indefinite integral has different represen-
tations on the intervals (—oo,1) and (1, 00):

22 1 —22/2 —x —log(l —x) +Cy, z < 1,
EONTa—
11— x—1 —22/2 —x —log(z — 1) + Cy, z > 1.

To integrate the function y(x) = sin?(2z), we use a trigonometric formula 1 — cos(2a) = 2sin® a
and a new variable u = 4x:

g ] — 4 ™1 — 4
/ in?(20) dx — / 1—cos(de) , _ / L= cos(a) by
0 0 2 0 8

AT — cosu u—sinu [
= 7du: _—
0

T
8 8 weo 2

To find the antiderivative of the function y(z) = log® z, we integrate by parts three times:
/log?’xdx =zlogz — /xd/(log3 z) = zlogdz — /:17(10g3 z) dr = zlog®x — /3log2:17d:17
= zlog®x — 3xlog?z + /:Ed(?) log? z) = xlog® x — 3z log? z + /m(3 log? z)’ dx
= zlog®x — 3zlog?z + /6logxdx = zlog®x — 3zlog?z + 6z log z — /md(610g:17)
= zlog®x — 3z log?z + 6z log z — /m(610gm)'d:17 = zlog®x — 3zlog? z + 6z log z — /Gda:
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= zlog3 z — 3xlog? x + 62 log z — 6 + C.

To integrate the function y(z) = 2/v/1 — 22, we use a new variable u = 1 — 22:

1/2 1 1/2 1_ 2/ 1 1/2 1
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o V1—2? 2Jo V1-—22 2o V1-—22

V3
R

13 Lo
——5 | = o
2)1 Vu 3/4 2V/u

To integrate the function y(x) = 1/v4 — 22, we use a substitution x = 2sint (observe that x
changes from 0 to 1 when t changes from 0 to 7/6):

du = \/E‘izsm =1-

1 7r/6 2 3 t/
2sint) = (2sint)

1 /6 1
/ 7@:/ S L
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dt

Bonus Problem 5 (15 pts.) Suppose that a function p : R — R is locally a polynomial,
which means that for every ¢ € R there exists ¢ > 0 such that p coincides with a polynomial
on the interval (¢ — &, ¢+ €). Prove that p is a polynomial.

For any ¢ € R let p. denote a polynomial and e, denote a positive number such that p(z) = p.(z)
for all x € (¢ —e.,c+¢e.). We are going to show that p = py on the entire real line. Consider two
sets B4 ={z > 0] p(x) # po(x)} and E_ = {x < 0| p(z) # po(x)}. Assume that the set F. is not
empty. Clearly, F, is bounded below. Hence d = inf £, is a well-defined real number. Note that
E, C [g9,00). Therefore d > gy > 0. Observe that p(z) = po(x) for z € (0,d) and p(x) = py(z) for
x € (d—e4,d+e4). The interval (0,d) overlaps with the interval (d —e4,d + €4). Hence pg coincides
with po on the intersection (0,d) N (d — e4,d + €4). Equivalently, the difference p; — po is zero on
(0,d) N (d — e4,d + €4). Since pg — po is a polynomial and any nonzero polynomial has only finitely
many roots, we conclude that py — pg is identically 0. Then the polynomials py and pg are the same.
It follows that p(x) = po(z) for x € (0,d + €4) so that d # inf E4, a contradiction. Thus E; = 0.
Similarly, we prove that the set F_ is empty as well. Since EF, = E_ = (), the function p coincides
with the polynomial pg.

Bonus Problem 6 (15 pts.) Show that a function

1
exp | — if x| <1,
vy e ()
0 if |z| >1

is infinitely differentiable on R.

Consider a function h : R — R defined by h(z) = e~/* for £ > 0 and h(z) = 0 for z < 0. It
is easy to verify that f(x) = h(2 + 2x)h(2 — 2z) for all x € R. Since the set C*°(R) of infinitely
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differentiable functions is closed under multiplication and composition of functions, it is enough to
prove that h € C*°(R).

Obviously, the function & is infinitely differentiable on (—o0,0) and on (0,00). Moreover, all
derivatives on (—o00,0) are identically zero. Let us prove that for any integer n > 0 there exists a
polynomial p,, such that h(™ (z) = p,(z)z=2"e~Y/* for all > 0, where h("™ is the n-th derivative of
h for n > 0 and h(®) = h. The proof is by induction on n. The base case n = 0 is trivial, with pg = 1.
Now assume that the above representation holds for some integer n > 0. Then

R () = (h(")(a;))' — (pn(a:)x_zne‘l/x)’
= P (@)a e+ py (@) (272 eV 4 py ()22 (e
Ph(z)a™ e VT 4 py(z)(—2n)2 eV 4 py(2)a e e

— pn+1(9€)x_2("+1) e—l/m7

where p,11(z) = pl,(2)2? — 2np,(z)z + p,(x) is a polynomial. Since t¥/e! — 0 as t — +oo for any
k>0 and 1/z — 400 as £ — 0+, we obtain that z—%e~1/* — 0 as # — 0+ for any k > 0. Then it
follows from the above that h("™) (z)/z — 0 as 2 — 0+ for any n > 0. Now it easily follows by induction
on n € N that the function & is n times differentiable at 0 and ~((0) = 0. Thus h € C*®(R).



