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Lecture 4:
Groups and semigroups.

Subgroups.



Groups

Definition. A group is a binary structure (G , ∗) that satisfies
the following axioms:

(G0: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G1: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G2: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G3: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or abelian) if
it satisfies an additional axiom:

(G4: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Addition modulo n

Given a natural number n, let
Zn = {0, 1, 2, . . . , n− 1}.

A binary operation +n (addition modulo n) on Zn

is defined for any x , y ∈ Zn by

x +n y =

{

x + y if x + y < n,

x + y − n if x + y ≥ n.

Now let n be a positive real number and

Rn = [0, n). The binary operation +n on Rn is
defined by the same formula as above.

Theorem Each (Zn,+n) and each (Rn,+n) is a
group. All groups (Rn,+n) are isomorphic.



Transformation groups

Definition. A transformation group is a group where
elements are bijective transformations of a fixed set X and the
operation is composition.

Examples.

• Symmetric group S(X ): all bijective functions f : X → X .

• Translations of the real line: Tc(x) = x + c, x ∈ R.

• Homeo(R): the group of all invertible functions f : R → R

such that both f and f −1 are continuous (such functions are
called homeomorphisms).

• Homeo+(R): the group of all increasing functions in
Homeo(R) (those that preserve orientation of the real line).

• Diff(R): the group of all invertible functions f : R → R

such that both f and f −1 are continuously differentiable (such
functions are called diffeomorphisms).



Matrix groups

A group is called linear if its elements are n×n matrices and
the group operation is matrix multiplication.

• General linear group GL(n,R) consists of all n×n

matrices that are invertible (i.e., with nonzero determinant).

The identity element is I = diag(1, 1, . . . , 1).

• Special linear group SL(n,R) consists of all n×n

matrices with determinant 1.

Closed under multiplication since det(AB) = det(A) det(B).
Also, det(A−1) = (det(A))−1.

• Orthogonal group O(n,R) consists of all orthogonal
n×n matrices (AT = A−1).

• Special orthogonal group SO(n,R) consists of all
orthogonal n×n matrices with determinant 1.

SO(n,R) = O(n,R) ∩ SL(n,R).



Semigroups

Definition. A semigroup is a binary structure (S , ∗) that
satisfies the following axioms:

(S0: closure)
for all elements g and h of S , g ∗ h is an element of S ;

(S1: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ S .

The semigroup (S , ∗) is said to be a monoid if it satisfies an
additional axiom:

(S2: existence of identity) there exists an element e ∈ S

such that e ∗ g = g ∗ e = g for all g ∈ S .

Optional useful properties of semigroups:

(S3: cancellation) g ∗ h1 = g ∗ h2 implies h1 = h2 and
h1 ∗ g = h2 ∗ g implies h1 = h2 for all g , h1, h2 ∈ S .

(S4: commutativity) g ∗ h = h ∗ g for all g , h ∈ S .



Examples of semigroups

• Clearly, any group is also a semigroup and a monoid.

• Real numbers R with multiplication (commutative monoid).

• Positive integers with addition (commutative semigroup
with cancellation).

• Positive integers with multiplication (commutative monoid
with cancellation).

• Given a nonempty set X , all functions f : X → X with
composition (monoid).

• All injective functions f : X → X with composition
(monoid with left cancellation: g ◦ f1 = g ◦ f2 =⇒ f1 = f2).

• All surjective functions f : X → X with composition
(monoid with right cancellation: f1 ◦ g = f2 ◦ g =⇒ f1 = f2).



Examples of semigroups

• All n×n matrices with multiplication (monoid).

• All n×n matrices with integer entries, with multiplication
(monoid).

• Invertible n×n matrices with integer entries, with
multiplication (monoid with cancellation).

• All subsets of a set X with the operation of union
(commutative monoid).

• All subsets of a set X with the operation of intersection
(commutative monoid).

• Positive integers with the operation a ∗ b = max(a, b)
(commutative monoid).

• Positive integers with the operation a ∗ b = min(a, b)
(commutative semigroup).



Examples of semigroups

• Given a finite alphabet X , the set X ∗ of all finite
words (strings) in X with the operation of

concatenation.

If w1 = a1a2 . . . an and w2 = b1b2 . . . bk , then
w1w2 = a1a2 . . . anb1b2 . . . bk . This is a monoid with
cancellation. The identity element is the empty word.



Basic properties of groups

• The identity element is unique.

• The inverse element is unique.

• (g−1)−1 = g . In other words, h = g−1 if and

only if g = h−1.

• (gh)−1 = h−1g−1.

• (g1g2 . . . gn)
−1 = g−1

n
. . . g−1

2
g−1

1
.

• Cancellation laws: gh1 = gh2 =⇒ h1 = h2
and h1g = h2g =⇒ h1 = h2 for all g , h1, h2 ∈ G .

• If hg = g or gh = g for some g ∈ G , then

h is the identity element.

• gh = e ⇐⇒ hg = e ⇐⇒ h = g−1.



Equations in groups

Theorem Let G be a group. For any a, b, c ∈ G ,

• the equation ax = b has a unique solution
x = a−1b;

• the equation ya = b has a unique solution
y = ba−1;
• the equation azc = b has a unique solution

z = a−1bc−1.



Powers of an element

Let g be an element of a group G . The positive powers of g
are defined inductively:

g 1 = g and g k+1 = g kg for every integer k ≥ 1.

The negative powers of g are defined as the positive powers of
its inverse: g−k = (g−1)k for every positive integer k.
Finally, we set g 0 = e.

Theorem Let g be an element of a group G and r , s ∈ Z.
Then
(i) g rg s = g r+s ,
(ii) (g r)s = g rs ,
(iii) (g r)−1 = g−r .

Idea of the proof: First one proves the theorem for positive
r , s by induction (induction on s for (i) and (ii), induction on
r for (iii) ). Then the general case is reduced to the case of
positive r , s.



Order of an element

Let g be an element of a group G . We say that g has finite
order if g n = e for some positive integer n.

If this is the case, then the smallest positive integer n with this
property is called the order of g .

Otherwise g is said to be of infinite order.

Theorem If G is a finite group, then every element of G has
finite order.

Proof: Let g ∈ G and consider the list of powers:
g , g 2

, g 3
, . . . . Since all elements in this list belong to the

finite set G , there must be repetitions within the list. Assume
that g r = g s for some 0 < r < s. Then g re = g rg s−r

=⇒ g s−r = e due to the cancellation law.



Subgroups

Definition. A group H is a called a subgroup of a group G if
H is a subset of G and the group operation on H is obtained
by restricting the group operation on G .

Proposition If H is a subgroup of G then (i) the identity
element in H is the same as the identity element in G ;
(ii) for any g ∈ H the inverse g−1 taken in H is the same as
the inverse taken in G .

Theorem Let H be a subset of a group G and define an
operation on H by restricting the group operation of G . Then
the following are equivalent:
(i) H is a subgroup of G ;
(ii) H contains e and is closed under the operation and under
taking the inverse, that is, g , h ∈ H =⇒ gh ∈ H and
g ∈ H =⇒ g−1 ∈ H;
(iii) H is nonempty and g , h ∈ H =⇒ gh−1 ∈ H.



Examples of subgroups: • (Z,+) is a subgroup of (R,+).

• (Q \ {0}, ·) is a subgroup of (R \ {0}, ·).

• The special linear group SL(n,R) is a subgroup of the
general linear group GL(n,R).

• The group of diffeomorphisms Diff(R) of the real line is a
subgroup of the group Homeo(R) of homeomorphisms.

• Any group G is a subgroup of itself.

• If e is the identity element of a group G , then {e} is the
trivial subgroup of G .

Counterexamples: • (R+
, ·) is not a subgroup of (R,+)

since the operations do not agree (even though the groups are
isomorphic).

• (Zn,+n) is not a subgroup of (Z,+) since the operations
do not agree (even though they do agree sometimes).

• (Z \ {0}, ·) is not a subgroup of (R \ {0}, ·) since
(Z \ {0}, ·) is not a group (it is a subsemigroup).


