MATH 415
Modern Algebra |

Lecture 4:
Groups and semigroups.
Subgroups.



Groups

Definition. A group is a binary structure (G,x*) that satisfies
the following axioms:

(GO: closure)

for all elements g and h of G, g* h is an element of G;
(G1: associativity)

(gxh)yxk=g=x(hxk) forall g,h ke G,

(G2: existence of identity)

there exists an element e € G, called the identity (or unit)
of G, such that exg=gxe=g forall g e G;

(G3: existence of inverse)

for every g € G there exists an element h € G, called the
inverse of g, such that gxh=hxg =ce.

The group (G, ) is said to be commutative (or abelian) if
it satisfies an additional axiom:

(G4: commutativity) gxh=hxg forall g,heG.



Addition modulo n

Given a natural number n, let
Z,=14{0,1,2,...,n—1}.

A binary operation 4, (addition modulo n) on Z,
is defined for any x,y € Z, by

X4y if x+y<n,

X+”y:{x+y—n if x+y>n.

Now let n be a positive real number and
R, =[0,n). The binary operation +, on R, is
defined by the same formula as above.

Theorem Each (Z,,+,) and each (R,,+,) is a
group. All groups (R,,+,) are isomorphic.



Transformation groups

Definition. A transformation group is a group where
elements are bijective transformations of a fixed set X and the
operation is composition.

Examples.

e Symmetric group S(X): all bijective functions f : X — X.
e Translations of the real line: T (x) =x+ ¢, x € R.

e Homeo(R): the group of all invertible functions f : R — R

such that both f and £~ are continuous (such functions are
called homeomorphisms).

e Homeo ™ (R): the group of all increasing functions in
Homeo(R) (those that preserve orientation of the real line).
e Diff(R): the group of all invertible functions f : R — R
such that both f and =1 are continuously differentiable (such
functions are called diffeomorphisms).



Matrix groups

A group is called linear if its elements are nxn matrices and
the group operation is matrix multiplication.

e General linear group GL(n,R) consists of all nxn
matrices that are invertible (i.e., with nonzero determinant).
The identity element is | = diag(1,1,...,1).

e Special linear group SL(n,R) consists of all nxn
matrices with determinant 1.

Closed under multiplication since det(AB) = det(A) det(B).
Also, det(A™1) = (det(A))~L.

e Orthogonal group O(n,R) consists of all orthogonal
nxn matrices (AT = A7),

e Special orthogonal group SO(n,R) consists of all
orthogonal nxn matrices with determinant 1.

SO(n,R) = O(n,R) N SL(n,R).



Semigroups

Definition. A semigroup is a binary structure (S, *) that
satisfies the following axioms:

(SO: closure)

for all elements g and h of S, g * h is an element of S;

(S1: associativity)
(gxh)xk=g=x(hxk) forall g,h keS.

The semigroup (S, *) is said to be a monoid if it satisfies an
additional axiom:

(S2: existence of identity) there exists an element e € S
such that exg=gx*xe=g forall ge€S.

Optional useful properties of semigroups:

(S3: cancellation) g* h; = g« hy implies h; = h, and
hi xg = hy x g implies hy = h, forall g,hy,h, €8S.

(S4: commutativity) g«h=hxg forall g, heS.



Examples of semigroups

e Clearly, any group is also a semigroup and a monoid.
e Real numbers R with multiplication (commutative monoid).

e Positive integers with addition (commutative semigroup
with cancellation).

e Positive integers with multiplication (commutative monoid
with cancellation).

e Given a nonempty set X, all functions f : X — X with
composition (monoid).

e All injective functions f : X — X with composition
(monoid with left cancellation: gofi=gofh = f =15).

e All surjective functions f : X — X with composition
(monoid with right cancellation: fog=fhog — f =10).



Examples of semigroups

e All nxn matrices with multiplication (monoid).

e All nxn matrices with integer entries, with multiplication
(monoid).

e Invertible nxn matrices with integer entries, with
multiplication (monoid with cancellation).

e All subsets of a set X with the operation of union
(commutative monoid).

e All subsets of a set X with the operation of intersection
(commutative monoid).

e Positive integers with the operation a x b = max(a, b)
(commutative monoid).

e Positive integers with the operation a* b = min(a, b)
(commutative semigroup).



Examples of semigroups

e Given a finite alphabet X, the set X* of all finite

words (strings) in X with the operation of
concatenation.

If Wi = aiap...ap and Wy = b1b2 R bk, then
WiWs = a1a>...ap,b1bs ... b,. This is a monoid with
cancellation. The identity element is the empty word.



Basic properties of groups

e The identity element is unique.

e The inverse element is unique.

e (g})1=g. Inother words, h =g ! if and
only if g = h7L.

o (ghyl=hlg™t

e (21&-..8) =g . &la

e Cancellation laws: gh; = gh, =— h; = hy
and g =hg = hy=hy forall g,h;,h, €G.
o If hg=g or gh=g forsome g & G, then
h is the identity element.

e gh=e < hg=e < h=g"



Equations in groups

Theorem Let G be a group. For any a, b,c € G,

e the equation ax = b has a unique solution
x =alb:

e the equation ya = b has a unique solution
y =ba’l

e the equation azc = b has a unique solution
z=albc L.



Powers of an element
Let g be an element of a group G. The positive powers of g
are defined inductively:
gl =g and gt'l
The negative powers of g are defined as the positive powers of

its inverse: g~k = (g71)k for every positive integer k.
Finally, we set g% = e.

= gkg for every integer k > 1.

Theorem Let g be an element of a group G and r,s € Z.
Then

(I) grgs — gr—l—s,

(i) (") =&~

(i) () =&

Idea of the proof: First one proves the theorem for positive
r,s by induction (induction on s for (i) and (ii), induction on
r for (i) ). Then the general case is reduced to the case of
positive r,s.



Order of an element

Let g be an element of a group G. We say that g has finite
order if g” = e for some positive integer n.

If this is the case, then the smallest positive integer n with this
property is called the order of g.

Otherwise g is said to be of infinite order.

Theorem If G is a finite group, then every element of G has
finite order.

Proof: Let g € G and consider the list of powers:

g,82%, g%, .... Since all elements in this list belong to the
finite set G, there must be repetitions within the list. Assume
that g" = g° forsome 0 <r <s. Then gle=g"g*"

= g° " = e due to the cancellation law.



Subgroups

Definition. A group H is a called a subgroup of a group G if
H is a subset of G and the group operation on H is obtained
by restricting the group operation on G.

Proposition If H is a subgroup of G then (i) the identity
element in H is the same as the identity element in G;

(i) for any g € H the inverse g~* taken in H is the same as
the inverse taken in G.

Theorem Let H be a subset of a group G and define an
operation on H by restricting the group operation of G. Then
the following are equivalent:

(i) H is a subgroup of G;

(ii) H contains e and is closed under the operation and under
taking the inverse, thatis, g,he H — ghe H and
geEH = gleH,

(iii) H is nonempty and g, h€ H = gh™! € H.



Examples of subgroups: e (Z,4) is a subgroup of (R,+).
e (Q\ {0},) is a subgroup of (R \ {0},-).

e The special linear group SL(n,R) is a subgroup of the
general linear group GL(n,R).

e The group of diffeomorphisms Diff(R) of the real line is a
subgroup of the group Homeo(R) of homeomorphisms.

e Any group G is a subgroup of itself.

e If e is the identity element of a group G, then {e} is the
trivial subgroup of G.

Counterexamples: o (R™,-) is not a subgroup of (R, +)
since the operations do not agree (even though the groups are
isomorphic).

® (Zy,+n) is not a subgroup of (Z,+) since the operations
do not agree (even though they do agree sometimes).

e (Z \ {0},) is not a subgroup of (R\ {0},-) since

(Z \ {0},-) is not a group (it is a subsemigroup).



