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Modern Algebra I

Lecture 8:

Definition of the determinant.
Cosets.

Lagrange’s Theorem.



Sign of a permutation

Theorem 1 For any n ≥ 2 there exists a unique function
sgn : Sn → {−1, 1} such that

• sgn(πσ) = sgn(π) sgn(σ) for all π, σ ∈ Sn,

• sgn(τ) = −1 for any transposition τ in Sn.

A permutation π is called even if it is a product of an even
number of transpositions, and odd if it is a product of an odd
number of transpositions. It turns out that π is even if
sgn(π) = 1 and odd if sgn(π) = −1.

Theorem 2 (i) sgn(πσ) = sgn(π) sgn(σ) for any π, σ ∈ Sn.
(ii) sgn(π−1) = sgn(π) for any π ∈ Sn.
(iii) sgn(id) = 1.
(iv) sgn(τ) = −1 for any transposition τ .
(v) sgn(σ) = (−1)r−1 for any cycle σ of length r .



Definition of the determinant

Definition. det (a) = a,
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= a11a22a33 + a12a23a31 + a13a21a32

−a13a22a31 − a12a21a33 − a11a23a32.

If A = (aij) is an n×n matrix then

detA =
∑

π∈Sn

sgn(π) a1,π(1) a2,π(2) . . . an,π(n),

where π runs over all permutations of {1, 2, . . . , n}.



Theorem detAT = detA.

Proof: Let A = (aij)1≤i ,j≤n. Then AT = (bij)1≤i ,j≤n, where
bij = aji . We have

detAT =
∑

π∈Sn

sgn(π) b1,π(1) b2,π(2) . . . bn,π(n)

=
∑

π∈Sn

sgn(π) aπ(1),1 aπ(2),2 . . . aπ(n),n

=
∑

π∈Sn

sgn(π) a1,π−1(1) a2,π−1(2) . . . an,π−1(n).

When π runs over all permutations of {1, 2, . . . , n}, so does
σ = π−1. It follows that

detAT =
∑

σ∈Sn

sgn(σ−1) a1,σ(1) a2,σ(2) . . . an,σ(n)

=
∑

σ∈Sn

sgn(σ) a1,σ(1) a2,σ(2) . . . an,σ(n) = detA.



Theorem 1 Suppose A is a square matrix and B is
obtained from A by exchanging two rows. Then

detB = − detA.

Theorem 2 Suppose A is a square matrix and B is

obtained from A by permuting its rows. Then
detB = detA if the permutation is even and

detB = − detA if the permutation is odd.



Proof: Let A = (aij)1≤i ,j≤n be an n×n matrix. Suppose that
a matrix B is obtained from A by permuting its rows according
to a permutation σ ∈ Sn. Then B = (bij)1≤i ,j≤n, where
bσ(i),j = aij . Equivalently, bij = aσ−1(i),j . We have

detB =
∑

π∈Sn

sgn(π) b1,π(1) b2,π(2) . . . bn,π(n)

=
∑

π∈Sn

sgn(π) aσ−1(1),π(1) aσ−1(2),π(2) . . . aσ−1(n),π(n)

=
∑

π∈Sn

sgn(π) a1,πσ(1) a2,πσ(2) . . . an,πσ(n).

When π runs over all permutations of {1, 2, . . . , n}, so does
τ = πσ. It follows that

detB =
∑

τ∈Sn

sgn(τσ−1) a1,τ(1) a2,τ(2) . . . an,τ(n)

= sgn(σ−1)
∑

τ∈Sn

sgn(τ) a1,τ(1) a2,τ(2) . . . an,τ(n) = sgn(σ) detA.



The Vandermonde determinant

Definition. The Vandermonde determinant is

the determinant of the following matrix

V =
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1 xn x2n · · · xn−1
n

















,

where x1, x2, . . . , xn ∈ R. Equivalently,
V = (aij)1≤i ,j≤n, where aij = x

j−1
i .
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=
∏

1≤i<j≤n

(xj − xi).

Corollary Consider a polynomial

p(x1, x2, . . . , xn) =
∏

1≤i<j≤n(xj − xi).

Then

p(xπ(1), xπ(2), . . . , xπ(n)) = sgn(π) p(x1, x2, . . . , xn)

for any permutation π ∈ Sn.



Cosets

Definition. Let H be a subgroup of a group G . A coset
(or left coset) of the subgroup H in G is a set of the form
aH = {ah : h ∈ H}, where a ∈ G . Similarly, a right coset of H
in G is a set of the form Ha = {ha : h ∈ H}, where a ∈ G .

Theorem Let H be a subgroup of G and define a relation R on G

by aRb ⇐⇒ a ∈ bH. Then R is an equivalence relation.

Proof: We have aRb if and only if b−1a ∈ H.
Reflexivity: aRa since a−1a = e ∈ H.
Symmetry: aRb =⇒ b−1a ∈ H =⇒ a−1b = (b−1a)−1 ∈ H

=⇒ bRa. Transitivity: aRb and bRc =⇒ b−1a, c−1b ∈ H

=⇒ c−1a = (c−1b)(b−1a) ∈ H =⇒ aRc .

Corollary The cosets of the subgroup H in G form a partition of
the set G .

Proof: Since R is an equivalence relation, its equivalence classes
partition the set G . Clearly, the equivalence class of g is gH.



Examples of cosets

• G = Z, H = nZ.
The coset of a ∈ Z is a + nZ, the congruence class of a

modulo n (all integers b such that b ≡ a mod n).

• G = R
3, H is the plane x + 2y − z = 0.

H is a subgroup of G since it is a subspace. The coset of
(x0, y0, z0) ∈ R

3 is the plane x + 2y − z = x0 + 2y0 − z0
parallel to H.

• G = Sn, H = An.
There are only 2 cosets, the set of even permutations An and
the set of odd permutations Sn \ An.

• G is any group, H = G .
There is only one coset, G .

• G is any group, H = {e}.
Each element of G forms a separate coset.



Lagrange’s Theorem

The number of elements in a group G is called the order of G
and denoted |G |. Given a subgroup H of G , the number of
cosets of H in G is called the index of H in G and denoted
(G : H).

Theorem (Lagrange) If H is a subgroup of a finite group
G , then |G | = (G : H) · |H|. In particular, the order of H
divides the order of G .

Proof: For any a ∈ G define a function f : H → aH by
f (h) = ah. By definition of aH, this function is surjective.
Also, it is injective due to the left cancellation property:
f (h1) = f (h2) =⇒ ah1 = ah2 =⇒ h1 = h2.
Therefore f is bijective. It follows that the number of
elements in the coset aH is the same as the order of the
subgroup H. Since the cosets of H in G partition the set G ,
the theorem follows.



Corollaries of Lagrange’s Theorem

Corollary 1 If G is a finite group, then the order
o(g) of any element g ∈ G divides the order of G .

Proof: The order of g ∈ G is the same as the order of the
cyclic group 〈g〉, which is a subgroup of G .

Corollary 2 If G is a finite group, then g |G | = e

for all g ∈ G .

Proof: We have g n = e whenever n is a multiple of o(g).
By Corollary 1, |G | is a multiple of o(g) for all g ∈ G .



Corollary 3 Any group G of prime order p is cyclic.

Proof: Take any element g ∈ G different from e. Then
o(g) 6= 1, hence o(g) = p, and this is also the order of the
cyclic subgroup 〈g〉. It follows that 〈g〉 = G .

Corollary 4 Any group G of prime order has only
two subgroups: the trivial subgroup and G itself.

Proof: If H is a subgroup of G then |H| divides |G |.
Since |G | is prime, we have |H| = 1 or |H| = |G |.
In the former case, H is trivial. In the latter case, H = G .

Corollary 5 The alternating group An, n ≥ 2,
consists of n!/2 elements.

Proof: Indeed, An is a subgroup of index 2 in the symmetric
group Sn. The latter consists of n! elements.



Theorem Let G be a cyclic group of finite order n.
Then for any divisor d of n there exists a unique

subgroup of G of order d , which is also cyclic.

Proof: Let g be the generator of the cyclic group G . Take
any divisor d of n. Since the order of g is n, it follows that
the element g n/d has order d . Therefore a cyclic group
H = 〈g n/d〉 has order d .

Now assume H ′ is another subgroup of G of order d . The
group H ′ is cyclic since G is cyclic. Hence H ′ = 〈g k〉 for
some k ∈ Z. Since the order of the element g k is d while the
order of g is n, it follows that gcd(n, k) = n/d . We know
that gcd(n, k) = an + bk for some a, b ∈ Z. Then
g n/d = g an+bk = g nag kb = (g n)a(g k)b = (g k)b ∈ 〈g k〉 = H ′.
Consequently, H = 〈g n/d〉 ⊂ H ′. However H and H ′ both
consist of d elements. Thus H ′ = H.


