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Lecture 8:
Definition of the determinant.
Cosets.
Lagrange’s Theorem.



Sign of a permutation

Theorem 1 For any n > 2 there exists a unique function
sgn: S, — {—1,1} such that

e sgn(mo) = sgn(m)sgn(o) forall 7,0 € S,

e sgn(7) = —1 for any transposition 7 in S,,.

A permutation 7 is called even if it is a product of an even
number of transpositions, and odd if it is a product of an odd
number of transpositions. It turns out that 7 is even if
sgn(m) =1 and odd if sgn(w) = —1.

Theorem 2 (i) sgn(wo) = sgn(w)sgn(o) for any 7,0 € S,,.
(i) sgn(7~!) = sgn(n) for any 7 € S,.

(iii) sgn(id) = 1.

(iv) sgn(7) = —1 for any transposition .

(v) sgn(o) = (1) for any cycle o of length r.



Definition of the determinant

a b

Definition. det(a) = a, c d

‘:ad—bc,

di1 4di2 4di3

dy1 d a3 | = a11822d33 + a12a23a31 1+ a13a21a32

a a a
31 €32 €33 —d13d22d31 — d12d21d33 — d11423432.

If A= (a;) isan nxn matrix then

det A e Z Sgn(ﬂ-) a]_"]r(l) 32,71'(2) te an,w(n)v

Tes,

where 7 runs over all permutations of {1,2,..., n}.



Theorem det AT = det A.

Proof: Let A= (a;)1<ij<n. Then AT = (b;)i<ij<n where
bjj = aji. We have

det AT = " sgn(m) b1 x(1) bor(2) - - - bamin)

’TI'GSn

= Z sgN(7) ar(1),1 @r(2),2 - - - An(n),n
= Z sgn(ﬂ) al,,r_1(1) 3277r—1(2) Ce a,m_l(n).

When 7 runs over all permutations of {1,2,...,n}, so does

o =m"1t It follows that

det AT = " sgn(07") a1,0(1) 32.0(2) - - - Ano(n)
O'GSn

= Z sgn(a) a1,6(1) 92,6(2) - - - An,o(n) = det A.



Theorem 1 Suppose A is a square matrix and B is
obtained from A by exchanging two rows. Then
det B = — det A.

Theorem 2 Suppose A is a square matrix and B is
obtained from A by permuting its rows. Then

det B = det A if the permutation is even and

det B = — det A if the permutation is odd.



Proof: Let A= (aj)i<ij<n be an nxn matrix. Suppose that
a matrix B is obtained from A by permuting its rows according
to a permutation o € S,. Then B = (bjj)1<ij<n where
bs(i)j = aj. Equivalently, b; = a,-1(j);. We have

det B = Z sgn(m) by (1) b2r2) - - bar(n)

TESH

= Z sgn(m) ds-1(1),7(1) do-1(2),7(2) - * - o—1(n),x(n)

TESH
= Z Sgn(ﬂ-) a1,wo(1) 92,m0(2) - - - n,wo(n)-
TESH
When 7 runs over all permutations of {1,2,...,n}, so does

7 =mo. It follows that

det B = Z SgH(TO'_l) a1,r(1) @2,7(2) - - - An,r(n)
TESy

= sgn(o Z sgn(7) a1,-(1) 32,7(2) - - - an.r(n) = sgn(o) det A.
TES,



The Vandermonde determinant

Definition. The Vandermonde determinant is
the determinant of the following matrix

(1 xp X2 o x{” 1\
2 n—1
1 xo x5 - X
V=11 x3 x32 X3y 1,
\1 Xp X2 e x,',’_1)
where xi,x,...,x, € R. Equivalently,
Y Y y

1
V = (a,J)1<,J<,,, where a; = xJ



Theorem

1 oxg X2 - Xt

1 x x22 e x2”_1

1 x3 x2 - xJ ' = H (x;i — xi).
o : .. : 1<i<j<n

1 x, x,% e x,’,’_1

Corollary Consider a polynomial
P(X1, Xo, - .. s Xp) = H1§i<jgn(xj — X;)-
Then
P(Xe(1)s Xx(2)s - - -+ Xn(m)) = Sg0(T) P(X1, X2, - - -, Xp)

for any permutation w € S,.



Cosets

Definition. Let H be a subgroup of a group G. A coset

(or left coset) of the subgroup H in G is a set of the form

aH = {ah: h € H}, where a € G. Similarly, a right coset of H
in G is a set of the form Ha = {ha: he€ H}, where a € G.

Theorem Let H be a subgroup of G and define a relation R on G
by aRb <= a <€ bH. Then R is an equivalence relation.

Proof: We have aRb if and only if b~1a € H.

Reflexivity: aRa since a la=ec H.

Symmetry: aRb = b lacH = alb=(bla)lecH
—> bRa. Transitivity: aRb and bRc = b la,c"bc H
— cla=(c'b)(b7ta) e H = aRc.

Corollary The cosets of the subgroup H in G form a partition of
the set G.

Proof: Since R is an equivalence relation, its equivalence classes
partition the set G. Clearly, the equivalence class of g is gH.



Examples of cosets
e G=7, H=nZ.

The coset of a € Z is a+ nZ, the congruence class of a
modulo n (all integers b such that b = a mod n).

e G=R3 Histheplane x +2y — z = 0.

H is a subgroup of G since it is a subspace. The coset of
(x0, Y0, 20) € R? is the plane x +2y — z = xg + 2y — 2o
parallel to H.

e G=S5, H=A,.
There are only 2 cosets, the set of even permutations A, and
the set of odd permutations S, \ A,.

e G isany group, H=G.

There is only one coset, G.

e G is any group, H = {e}.

Each element of G forms a separate coset.



Lagrange’s Theorem

The number of elements in a group G is called the order of G
and denoted |G|. Given a subgroup H of G, the number of
cosets of H in G is called the index of H in G and denoted
(G : H).

Theorem (Lagrange) If H is a subgroup of a finite group
G, then |G| = (G : H)-|H|. In particular, the order of H
divides the order of G.

Proof: For any a € G define a function f : H — aH by
f(h) = ah. By definition of aH, this function is surjective.
Also, it is injective due to the left cancellation property:
f(hl) = f(hz) — ah]_ = ah2 — h]_ = h2.

Therefore f is bijective. It follows that the number of
elements in the coset aH is the same as the order of the
subgroup H. Since the cosets of H in G partition the set G,
the theorem follows.



Corollaries of Lagrange’s Theorem

Corollary 1 If G is a finite group, then the order
o(g) of any element g € G divides the order of G.

Proof: The order of g € G is the same as the order of the
cyclic group (g), which is a subgroup of G.

Corollary 2 If G is a finite group, then g!¢l =e
for all g € G.

Proof: We have g" = e whenever n is a multiple of o(g).
By Corollary 1, |G| is a multiple of o(g) for all g € G.



Corollary 3 Any group G of prime order p is cyclic.

Proof: Take any element g € G different from e. Then
o(g) # 1, hence o(g) = p, and this is also the order of the
cyclic subgroup (g). It follows that (g) = G.

Corollary 4 Any group G of prime order has only
two subgroups: the trivial subgroup and G itself.
Proof: If H is a subgroup of G then |H| divides |G|.

Since |G| is prime, we have |H| =1 or |H|=|G]|.
In the former case, H is trivial. In the latter case, H = G.

Corollary 5 The alternating group A,, n > 2,
consists of n!/2 elements.

Proof: Indeed, A, is a subgroup of index 2 in the symmetric
group S,. The latter consists of n! elements.



Theorem Let G be a cyclic group of finite order n.
Then for any divisor d of n there exists a unique
subgroup of G of order d, which is also cyclic.

Proof: Let g be the generator of the cyclic group G. Take
any divisor d of n. Since the order of g is n, it follows that
the element g/ has order d. Therefore a cyclic group

H = (g") has order d.

Now assume H’ is another subgroup of G of order d. The
group H' is cyclic since G is cyclic. Hence H' = (g*) for
some k € Z. Since the order of the element g* is d while the
order of g is n, it follows that gcd(n, k) = n/d. We know
that gcd(n, k) = an+ bk for some a,b € Z. Then

gn/d — gan+bk — gnagkb — (gn)a(gk)b — (gk)b c <gk> — H.
Consequently, H = (g"/4) C H'. However H and H’ both
consist of d elements. Thus H' = H.



