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Modern Algebra I

Lecture 11:

Classification of groups (continued).
Groups of symmetries.
Group actions on a set.



Isomorphism of groups

Definition. Let G and H be groups. A function f : G → H

is called an isomorphism of groups if it is bijective and
f (g1g2) = f (g1)f (g2) for all g1, g2 ∈ G .

The group G is said to be isomorphic to H if there exists an
isomorphism f : G → H. Notation: G ∼= H.

Theorem Isomorphism is an equivalence relation on the set
of all groups.

Classification of groups consists of describing all equivalence
classes of this relation and placing every known group into an
appropriate class.

Theorem The following features of groups are preserved
under isomorphisms: (i) the number of elements, (ii) the
number of elements of a particular order, (iii) being abelian,
(iv) being cyclic, (v) having a subgroup of a particular order
or particular index.



Classification of abelian groups

Theorem 1 Any finitely generated abelian group is
isomorphic to a direct product of cyclic groups.

Theorem 2 Any finite abelian group is isomorphic to a direct
product of the form Zp

m1
1

× Zp
m2
2

× · · · × Zp
mr
r
, where

p1, p2, . . . , pr are prime numbers and m1,m2, . . . ,mr are
positive integers.

Theorem 3 Suppose that Z
m × G ∼= Z

n × H, where m, n
are positive integers and G ,H are finite groups. Then m = n

and G ∼= H.

Theorem 4 Suppose that

Zp
m1
1

× Zp
m2
2

× · · · × Zp
mr
r

∼= Zq
n1
1
× Zq

n2
2
× · · · × Zq

ns
s
,

where pi , qj are prime numbers and mi , nj are positive
integers. Then the lists pm1

1 , pm2

2 , . . . , pmr
r and

qn1
1
, qn2

2
, . . . , qns

s coincide up to rearranging their elements.



Simple groups

Definition. A nontrivial group G is called simple if it has no
normal subgroups other than the trivial subgroup and G itself.

Examples.

• Cyclic group of a prime order.

• Alternating group An for n ≥ 5.

Theorem (Jordan, Hölder) For any finite group G there
exists a sequence of subgroups H0 = {e} ⊳ H1 ⊳ . . . ⊳ Hk = G

such that Hi−1 is a normal subgroup of Hi and the factor group
Hi/Hi−1 is simple for 1 ≤ i ≤ k. Moreover, the sequence of
factor groups H1/H0,H2/H1, . . . ,Hk/Hk−1 is determined by
G uniquely up to isomorphism and rearranging the terms.

All finite simple groups are classified (up to isomorphism, there
are several infinite series and 26 sporadic groups).



In view of the Jordan-Hölder Theorem, classification of finite
groups is reduced to the following problem.

Problem. Given a finite group H and a finite simple group K ,
classify all groups G such that N ∼= H and G/N ∼= K for
some normal subgroup N ⊳ G .

One solution is G = H × K . Indeed, consider a projection
map p : H × K → K defined by p(h, k) = k. This map is a
homomorphism of the group H × K onto K . We have that
Ker(p) = H × {eK}. Clearly, Ker(p) ∼= H. By the
Fundamental Theorem on Homomorphisms, G/Ker(p) ∼= K .
However the direct product need not be the only solution.

Example. H = Z3, K = Z2, G = S3.

The symmetric group S3 has a subgroup, the alternating group
A3 = {id, (1 2 3), (1 3 2)}, which is isomorphic to Z3. The
index (S3 : A3) equals 2. It follows that A3 is a normal
subgroup and S3/A3

∼= Z2.



Groups of symmetries

Definition. A transformation f : Rn → R
n is called a motion

(or a rigid motion) if it preserves distances between points.

Theorem All motions of Rn form a transformation group.
Any motion f : Rn → R

n can be represented as
f (x) = Ax + x0, where x0 ∈ R

n and A is an orthogonal
matrix (ATA = AAT = I ).

Given a geometric figure F ⊂ R
n, a symmetry of F is a

motion of Rn that preserves F . All symmetries of F form a
transformation group.

Example. • The dihedral group Dn is the group of
symmetries of a regular n-gon. It consists of 2n elements:
n reflections, n−1 rotations by angles 2πk/n,
k = 1, 2, . . . , n−1, and the identity function.



Equlateral triangle

Any symmetry of a polygon maps vertices to

vertices. Therefore it induces a permutation on the
set of vertices. Moreover, the symmetry is uniquely
recovered from the permutation.

In the case of the equilateral triangle, any
permutation of vertices comes from a symmetry.



Square

In the case of the square, not every permutation
of vertices comes from a symmetry of the square.

The reason is that a symmetry must map adjacent
vertices to adjacent vertices.



Regular tetrahedron

Any symmetry of a polyhedron maps vertices to

vertices. In the case of the regular tetrahedron, any
permutation of vertices comes from a symmetry.



Rotations of the circle

α

Let Rα : S1 → S1 be the rotation of the circle S1 by angle
α ∈ R. All rotations Rα, α ∈ R form a transformation
group. Namely, RαRβ = Rα+β, R−1

α = R−α, and R0 = id.

The group of rotations is a subgroup of the group of all
symmetries of the circle (the other symmetries are reflections).



Group of automorphisms

Definition. Any isomorphism of a group G onto itself is called
an automorphism of G .

Automorphisms are “symmetries” of the group as an algebraic
structure. All automorphisms of a given group G form a
transformation group denoted Aut(G ).

Example. • Conjugation.

Take any g ∈ G and define a map ig : G → G by
ig (x) = gxg−1. Then ig(xy ) = g(xy )g−1 = gx(g−1g)yg−1

= (gxg−1)(gyg−1) = ig (x)ig(y ). Hence ig is a
homomorphism. Further, ig (ih(x)) = ig (hxh

−1)
= g(hxh−1)g−1 = (gh)x(gh)−1 = igh(x). Hence ig ◦ ih = igh
for all g , h ∈ G . In particular, ig ◦ ig−1 = ig−1 ◦ ig = ie = idG .
Therefore ig−1 = (ig )

−1 so that ig is bijective.

Automorphisms of the form ig are called inner. They form a
group Inn(G ), which is a normal subgroup of Aut(G ).



Group action

Definition. An action φ of a group G on a set X (denoted
φ : G y X ) is a function φ : G × X → X such that

• φ(gh, x) = φ(g , φ(h, x)) for all g , h ∈ G and x ∈ M ;

• φ(e, x) = x for all x ∈ X .

Typically, the element φ(g , x) is denoted gx . Then the above
conditions can be rewritten as g(hx) = (gh)x and ex = x .

The action φ can (and should) be regarded as a collection of
transformations Tg :X→X , g ∈G , given by Tg (x)=φ(g , x).
It follows from the definition that TgTh = Tgh, Tg−1 = T−1

g ,
and Te = idX . Hence {Tg}g∈G is a transformation group
and g 7→ Tg is a homomorphism of the group G to the
symmetric group SX .

The group actions can be used to represent a given group as a
transformation group or to parametrize a transformation group
by an abstract group.



Examples of group actions

• Trivial action
Any group G acts on any nonempty set X ; the action
φ : G y X is given by φ(g , x) = x .

• Scalar multiplication
The multiplicative group R \ {0} acts on any vector space V ;
the action φ : R \ {0} y V is given by φ(λ, v) = λv.

• Natural action of a transformation group
G is a subgroup of SX (all permutations of the set X ); the
action φ : G y X is given by φ(f , x) = f (x).

• Koopman representation
G is a subgroup of SX ; it acts on the vector space F(X ,R) of
functions f : X → R by change of the variable. The action
φ : G y F(X ,R) is given by φ(g , f ) = f ◦ g−1. Note that
(f ◦ g−1

1
) ◦ g−1

2
= f ◦ (g2g1)

−1.



Examples of group actions

• Left adjoint action
Any group G acts on itself; the action φ : G y G is given by
φ(g , x) = gx .

• Right adjoint action
Any group G acts on itself; the action φ : G y G is given by
φ(g , x) = xg−1. Note that (xg−1

1 )g−1

2 = x(g2g1)
−1.

• Conjugation
Any group G acts on itself; the action φ : G y G is given by
φ(g , x) = gxg−1. This action is by automorphisms.

• Action on cosets of a subgroup
Any group G acts on the factor space G/H by a subgroup H

(where H need not be normal); the action φ : G y G/H is
given by φ(g , xH) = (gx)H.



An action of the additive group R is called a flow.

Example. Consider an autonomous system of n ordinary
differential equations of the first order















ẋ1 = g1(x1, x2, . . . , xn),
ẋ2 = g2(x1, x2, . . . , xn),
. . . . . . . . .
ẋn = gn(x1, x2, . . . , xn),

where g1, g2, . . . , gn are differentiable functions defined in a
domain D ⊂ R

n. In vector form, v̇ = G (v), where
G : D → R

n is a vector field. Assume that for any x ∈ D

the initial value problem v̇ = G (v), v(0) = x has a unique
solution vx(t), t ∈ R. For any t ∈ R and x ∈ D let
Ft(x) = vx(t). Then the maps Ft : D → D, t ∈ R describe
evolution of a dynamical system governed by the ODEs.

Since the system of ODEs is autonomous, it follows that
FtFs = Ft+s for all t, s ∈ R so that φ(t, x) = Ft(x) is a flow
on D.



Orbits

Suppose φ : G y X is a group action. Consider a relation ∼
on the set X such that x ∼ y if and only if x = gy for some
g ∈ G .

Proposition The relation ∼ is an equivalence relation.

The equivalence class of a point x ∈ X consists of all points
of the form gx , g ∈ G . It is called the orbit of x under the
action φ and denoted Gx or Orbφ(x).

The term “orbit” is motivated by the flows that describe
celestial motions.

The action φ : G y X is called transitive if the entire set X
forms a single orbit. For example, the adjoint actions of the
group G on itself (both left and right) are transitive.

The extreme opposite of a transitive action is the trivial
action, for which every point of X is a separate orbit.



Suppose φ : G y X is a group action.

Given an element g ∈ G , let Fix(g) = {x ∈ X | gx = x}.
Elements of Fix(g) are called fixed points of g (with respect
to the action φ).

Given a point x ∈ X , let Stab(x) = {g ∈ G | gx = x}.
Then Stab(x) is a subgroup of G called the stabilizer (or
isotropy group) of x .

The action φ is called faithful if Tg 6= Th whenever g 6= h,
where Tg(x) = gx . In other words, each element of G acts
on X in a distinct way. In the case of a faithful action, the
groups G and {Tg}g∈G are isomorphic. The action φ is
called free if Stab(x) = {e} for all x ∈ X . It is called
totally non-free if Stab(x) 6= Stab(y ) whenever x 6= y .

Theorem (Cayley) The left adjoint action of any group G is
free and hence faithful. Consequently, any group is isomorphic
to a transformation group.


