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Lecture 13:
Rings and fields.



Groups

Definition. A group is a binary structure (G,x*) that satisfies
the following axioms:

(GO: closure)

for all elements g and h of G, g* h is an element of G;
(G1: associativity)

(gxh)yxk=g=x(hxk) forall g,h ke G,

(G2: existence of identity)

there exists an element e € G, called the identity (or unit)
of G, such that exg=gxe=g forall g e G;

(G3: existence of inverse)

for every g € G there exists an element h € G, called the
inverse of g, such that gxh=hxg =ce.

The group (G, ) is said to be commutative (or abelian) if
it satisfies an additional axiom:

(G4: commutativity) gxh=hxg forall g,heG.



Semigroups

Definition. A semigroup is a binary structure (S, *) that
satisfies the following axioms:

(SO: closure)

for all elements g and h of S, g * h is an element of S;

(S1: associativity)
(gxh)xk=g=x(hxk) forall g,h keS.

The semigroup (S, *) is said to be a monoid if it satisfies an
additional axiom:

(S2: existence of identity) there exists an element e € S
such that exg=gx*xe=g forall ge€S.

Optional useful properties of semigroups:

(S3: cancellation) g* h; = g« hy implies h; = h, and
hi xg = hy x g implies hy = h, forall g,hy,h, €8S.

(S4: commutativity) g«h=hxg forall g, heS.



Rings

Definition. A ring is a set R, together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that

e R is an abelian group under addition,

e R is a semigroup under multiplication,

e multiplication distributes over addition.

The complete list of axioms is as follows:

(AO0) for all x,y € R, x+y is an element of R;

(Al) (x+y)+z=x+(y+z) forall x,y,z€R;

(A2) there exists an element, denoted 0, in R such that
X+0=0+x=x forall xe€R;

(A3) for every x € R there exists an element, denoted —x, in R
such that x4+ (—x) = (—x) +x=0;

(A4) x+y=y+x forall x,y €R;

(MO) for all x,y € R, xy is an element of R;

(M1) (xy)z = x(yz) forall x,y,z € R;

(D) x(y+z) = xy+xz and (y+z)x = yx+zx forall x,y,z € R.



Examples of rings

Informally, a ring is a set with three arithmetic operations:
addition, subtraction and multiplication. Subtraction is
defined by x —y = x + (—y).

e Real numbers R.

e Integers Z.

e 27, even integers.

e 7Z,: congruence classes modulo n.

e M,(R): all nxn matrices with real entries.

o M,(Z): all nxn matrices with integer entries.

e R[X]: polynomials in variable X with real coefficients.
e All functions f:S — R on a nonempty set S.

e Zero ring: any additive abelian group with trivial
multiplication: xy =0 for all x and y.

e Trivial ring {0}.



Multiplication modulo n

We have an isomorphism of additive groups
Zn,=7/nZ. Oftentimes, Z, is identified with
Z.]nZ.

We can define multiplication on Z, in two ways.
Directly, given x,y € {0,1,2,...,n—1}, we let

X -, y to be the remainder under division of xy by n
(multiplication modulo n).

Alternatively, we define multiplication on Z/nZ by
(x +nZ)(y + nZ) = xy + nZ for all x,y € Z.

Then Z, becomes a ring.



Example. Let M be the set of all 2x2 matrices of the form

(X _y>, where x,y € R.
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Hence M is closed under matrix addition, taking the negative,
and matrix multiplication. Also, the multiplication is
commutative on M. The associativity and commutativity of
the addition, the associativity of the multiplication, and the

distributive law hold on M since they hold for all 2x2
matrices. Thus M is a commutative ring.

Remark. M is the ring of complex numbers x + yi “in disguise”.



Divisors of zero

Theorem Let R be aring. Then x0 =0x =0 for all x € R.

Proof: Let y =x0. Then y+y =x0+ x0 = x(0+0)
=x0=y. It follows that (—y)+y+y = (—y)+y, hence
y = 0. Similarly, one shows that 0x = 0.

A nonzero element x of a ring R is a left zero divisor if
xy = 0 for another nonzero element y € R. The element y is
called a right zero divisor.

Examples. e In the ring Zg, the zero divisors are congruence
classes of 2, 3 and 4, as 2-3=4-3 =0(mod 6).

e In the ring M ,(R), the zero divisors (both left and right)
are nonzero matrices with zero determinant. For instance,

(6 0)(69)- (o) (30)-(3)

e In any zero ring, all nonzero elements are zero divisors.



Integral domains

A ring R is called a domain if it has no zero divisors.

Theorem Given a nontrivial ring R, the following are
equivalent:

e R is a domain,

e R\ {0} is a semigroup under multiplication,

e R\ {0} is a semigroup with cancellation under
multiplication.

Idea of the proof: No zero divisors means that R\ {0} is
closed under multiplication. Further, if a # 0 then ab = ac
— a(b—c)=0 = b—c=0 = b=c.

A ring R is called commutative if the multiplication is

commutative. R is called a ring with unity if there exists an
identity element for multiplication (denoted 1).

An integral domain is a nontrivial commutative ring with
unity and no zero divisors.



Fields

Definition. A field is a set F, together with two binary
operations called addition and multiplication and denoted
accordingly, such that

e F is an abelian group under addition,
e F\ {0} is an abelian group under multiplication,
e multiplication distributes over addition.

In other words, the field is a commutative ring with unity
(1 # 0) such that any nonzero element has a multiplicative
inverse.

Examples. e Real numbers R.

e Rational numbers Q.

e Complex numbers C.

® Zy: congruence classes modulo p, where p is prime.

e R(X): rational functions in variable X with real coefficients.



Basic properties of fields
e The zero 0 and the unity 1 are unique.
e Forany a € F, the negative —a is unique.

e Forany a#0, the inverse a=!

IS unique.
e —(—a)=aforall acF.

e 0-a=0 forall ae F.

e ab=0 impliesthat a=0 or b=0.

e (—1)-a=—a forall a€F.

e (-1)-(-1)=1.

e (—a)b=a(—b)= —ab forall a,be F.
e (a—b)c=ac—bc forall a,b,c€F.



Characteristic of a field

A field F is said to be of nonzero characteristic if
l1+14---+1=0 for some positive integer n.

n summands
The smallest integer with this property is called the
characteristic of F. Otherwise the field F has
characteristic 0.

The fields Q, R, and C have characteristic 0.
The field Z, (p prime) has characteristic p.
In general, any finite field has nonzero characteristic.
Any nonzero characteristic is prime since

Qe Dt ) =1+ 1,

n summands m summands nm summands




Problem. Let F = {0,1,a,b} be a field consisting of 4
elements, where 0 denotes the additive identity element, 1
denotes the multiplicative identity element, and a, b denote
the remaining two elements. Fill in the addition and
multiplication tables for the field F.
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Problem. Let F ={0,1,a, b} be a field consisting of 4
elements, where 0 denotes the additive identity element, 1
denotes the multiplicative identity element, and a, b denote
the remaining two elements. Fill in the addition and
multiplication tables for the field F.

Remarks on solution. First we fill in the multiplication table.
Since 0x =0 and 1x = x for every x € F, it remains to
determine only a?, b, and ab = ba. Using the fact that

{1, a, b} is a multiplicative group, we obtain that ab =1,
a’=b, and b?> = a.

As for the addition table, we have x + 0 = x for every x € F.
Next step is to determine 1+ 1. Assuming 1+ 1 =a, we
obtain a+1=5b and b+1=0. Thisis a contradiction: the
characteristic of F turns out to be 4, not a prime! Hence

14+ 1+# a. Similarly, 1+1+# b. By deduction, 1+1=0.
Then x+x=1x+1x=(1+1)x =0x =0 forall x € F.
The rest is filled in using the cancellation ( “sudoku”) laws.



