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Lecture 13:
Rings and fields.



Groups

Definition. A group is a binary structure (G , ∗) that satisfies
the following axioms:

(G0: closure)
for all elements g and h of G , g ∗ h is an element of G ;

(G1: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ G ;

(G2: existence of identity)
there exists an element e ∈ G , called the identity (or unit)
of G , such that e ∗ g = g ∗ e = g for all g ∈ G ;

(G3: existence of inverse)
for every g ∈ G there exists an element h ∈ G , called the
inverse of g , such that g ∗ h = h ∗ g = e.

The group (G , ∗) is said to be commutative (or abelian) if
it satisfies an additional axiom:

(G4: commutativity) g ∗ h = h ∗ g for all g , h ∈ G .



Semigroups

Definition. A semigroup is a binary structure (S , ∗) that
satisfies the following axioms:

(S0: closure)
for all elements g and h of S , g ∗ h is an element of S ;

(S1: associativity)
(g ∗ h) ∗ k = g ∗ (h ∗ k) for all g , h, k ∈ S .

The semigroup (S , ∗) is said to be a monoid if it satisfies an
additional axiom:

(S2: existence of identity) there exists an element e ∈ S

such that e ∗ g = g ∗ e = g for all g ∈ S .

Optional useful properties of semigroups:

(S3: cancellation) g ∗ h1 = g ∗ h2 implies h1 = h2 and
h1 ∗ g = h2 ∗ g implies h1 = h2 for all g , h1, h2 ∈ S .

(S4: commutativity) g ∗ h = h ∗ g for all g , h ∈ S .



Rings

Definition. A ring is a set R , together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that
• R is an abelian group under addition,
• R is a semigroup under multiplication,
• multiplication distributes over addition.

The complete list of axioms is as follows:
(A0) for all x , y ∈ R , x + y is an element of R ;
(A1) (x + y) + z = x + (y + z) for all x , y , z ∈ R ;
(A2) there exists an element, denoted 0, in R such that
x + 0 = 0 + x = x for all x ∈ R ;
(A3) for every x ∈ R there exists an element, denoted −x , in R

such that x + (−x) = (−x) + x = 0;
(A4) x + y = y + x for all x , y ∈ R ;
(M0) for all x , y ∈ R , xy is an element of R ;
(M1) (xy)z = x(yz) for all x , y , z ∈ R ;
(D) x(y+z) = xy+xz and (y+z)x = yx+zx for all x , y , z ∈ R .



Examples of rings

Informally, a ring is a set with three arithmetic operations:
addition, subtraction and multiplication. Subtraction is
defined by x − y = x + (−y ).

• Real numbers R.

• Integers Z.

• 2Z: even integers.

• Zn: congruence classes modulo n.

• Mn(R): all n×n matrices with real entries.

• Mn(Z): all n×n matrices with integer entries.

• R[X ]: polynomials in variable X with real coefficients.

• All functions f : S → R on a nonempty set S .

• Zero ring: any additive abelian group with trivial
multiplication: xy = 0 for all x and y .

• Trivial ring {0}.



Multiplication modulo n

We have an isomorphism of additive groups

Zn
∼= Z/nZ. Oftentimes, Zn is identified with

Z/nZ.

We can define multiplication on Zn in two ways.

Directly, given x , y ∈ {0, 1, 2, . . . , n− 1}, we let
x ·n y to be the remainder under division of xy by n

(multiplication modulo n).

Alternatively, we define multiplication on Z/nZ by
(x + nZ)(y + nZ) = xy + nZ for all x , y ∈ Z.

Then Zn becomes a ring.



Example. Let M be the set of all 2×2 matrices of the form(
x −y

y x

)

, where x , y ∈ R.

(
x −y

y x

)

+

(
x ′ −y ′

y ′ x ′

)

=

(
x + x ′ −(y + y ′)
y + y ′ x + x ′

)

,

−

(
x −y

y x

)

=

(
−x −(−y )
−y −x

)

,

(
x −y

y x

)(
x ′ −y ′

y ′ x ′

)

=

(
xx ′ − yy ′ −(xy ′ + yx ′)
xy ′ + yx ′ xx ′ − yy ′

)

.

Hence M is closed under matrix addition, taking the negative,
and matrix multiplication. Also, the multiplication is
commutative on M . The associativity and commutativity of
the addition, the associativity of the multiplication, and the
distributive law hold on M since they hold for all 2×2
matrices. Thus M is a commutative ring.

Remark. M is the ring of complex numbers x + yi “in disguise”.



Divisors of zero

Theorem Let R be a ring. Then x0 = 0x = 0 for all x ∈ R .

Proof: Let y = x0. Then y + y = x0 + x0 = x(0 + 0)
= x0 = y . It follows that (−y ) + y + y = (−y ) + y , hence
y = 0. Similarly, one shows that 0x = 0.

A nonzero element x of a ring R is a left zero divisor if
xy = 0 for another nonzero element y ∈ R . The element y is
called a right zero divisor.

Examples. • In the ring Z6, the zero divisors are congruence
classes of 2, 3 and 4, as 2 · 3 ≡ 4 · 3 ≡ 0 (mod 6).

• In the ring Mn(R), the zero divisors (both left and right)
are nonzero matrices with zero determinant. For instance,
(
1 0
0 0

)(
0 0
0 1

)

=

(
0 0
0 0

)

,

(
0 1
0 0

)2

=

(
0 0
0 0

)

.

• In any zero ring, all nonzero elements are zero divisors.



Integral domains

A ring R is called a domain if it has no zero divisors.

Theorem Given a nontrivial ring R , the following are
equivalent:
• R is a domain,
• R \ {0} is a semigroup under multiplication,
• R \ {0} is a semigroup with cancellation under

multiplication.

Idea of the proof: No zero divisors means that R \ {0} is
closed under multiplication. Further, if a 6= 0 then ab = ac

=⇒ a(b − c) = 0 =⇒ b − c = 0 =⇒ b = c.

A ring R is called commutative if the multiplication is
commutative. R is called a ring with unity if there exists an
identity element for multiplication (denoted 1).

An integral domain is a nontrivial commutative ring with
unity and no zero divisors.



Fields

Definition. A field is a set F , together with two binary
operations called addition and multiplication and denoted
accordingly, such that

• F is an abelian group under addition,
• F \ {0} is an abelian group under multiplication,
• multiplication distributes over addition.

In other words, the field is a commutative ring with unity
(1 6= 0) such that any nonzero element has a multiplicative
inverse.

Examples. • Real numbers R.

• Rational numbers Q.

• Complex numbers C.

• Zp: congruence classes modulo p, where p is prime.

• R(X ): rational functions in variable X with real coefficients.



Basic properties of fields

• The zero 0 and the unity 1 are unique.

• For any a ∈ F , the negative −a is unique.

• For any a 6= 0, the inverse a−1 is unique.

• −(−a) = a for all a ∈ F .

• 0 · a = 0 for all a ∈ F .

• ab = 0 implies that a = 0 or b = 0.

• (−1) · a = −a for all a ∈ F .

• (−1) · (−1) = 1.

• (−a)b = a(−b) = −ab for all a, b ∈ F .

• (a − b)c = ac − bc for all a, b, c ∈ F .



Characteristic of a field

A field F is said to be of nonzero characteristic if

1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n summands

= 0 for some positive integer n.

The smallest integer with this property is called the
characteristic of F . Otherwise the field F has

characteristic 0.

The fields Q, R, and C have characteristic 0.
The field Zp (p prime) has characteristic p.

In general, any finite field has nonzero characteristic.
Any nonzero characteristic is prime since

(1 + · · ·+ 1
︸ ︷︷ ︸

n summands

)(1 + · · ·+ 1
︸ ︷︷ ︸

m summands

) = 1 + · · · + 1
︸ ︷︷ ︸

nm summands

.



Problem. Let F = {0, 1, a, b} be a field consisting of 4
elements, where 0 denotes the additive identity element, 1
denotes the multiplicative identity element, and a, b denote
the remaining two elements. Fill in the addition and
multiplication tables for the field F .

+ 0 1 a b

0

1

a

b

× 0 1 a b

0

1

a

b



Problem. Let F = {0, 1, a, b} be a field consisting of 4
elements, where 0 denotes the additive identity element, 1
denotes the multiplicative identity element, and a, b denote
the remaining two elements. Fill in the addition and
multiplication tables for the field F .

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1
b b a 1 0

× 0 1 a b

0 0 0 0 0
1 0 1 a b

a 0 a b 1
b 0 b 1 a



Problem. Let F = {0, 1, a, b} be a field consisting of 4
elements, where 0 denotes the additive identity element, 1
denotes the multiplicative identity element, and a, b denote
the remaining two elements. Fill in the addition and
multiplication tables for the field F .

Remarks on solution. First we fill in the multiplication table.
Since 0x = 0 and 1x = x for every x ∈ F , it remains to
determine only a2, b2, and ab = ba. Using the fact that
{1, a, b} is a multiplicative group, we obtain that ab = 1,
a2 = b, and b2 = a.

As for the addition table, we have x + 0 = x for every x ∈ F .
Next step is to determine 1 + 1. Assuming 1 + 1 = a, we
obtain a+ 1 = b and b + 1 = 0. This is a contradiction: the
characteristic of F turns out to be 4, not a prime! Hence
1 + 1 6= a. Similarly, 1 + 1 6= b. By deduction, 1 + 1 = 0.
Then x + x = 1x + 1x = (1 + 1)x = 0x = 0 for all x ∈ F .
The rest is filled in using the cancellation (“sudoku”) laws.


