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Modern Algebra I

Lecture 14:
Follow-up on Exam 1.

Advanced algebraic structures.



Follow-up on Exam 1

Problem 1a. Consider a binary operation ∗ on R

given by x ∗ y = 3

√

x3 + y 3 for any x , y ∈ R. Is
(R, ∗) a semigroup? Is it a group?

First we check that the operation ∗ is well defined: x , y ∈ R

=⇒ x ∗ y ∈ R.

Then we observe that (x ∗ y )3 = x3 + y 3 for all x , y ∈ R.
Consider a function f : R → R given by f (x) = x3. We
obtain that f (x ∗ y ) = f (x) + f (y ) for all x , y ∈ R. This
means that f is a homomorphism of the binary structure
(R, ∗) to the binary structure (R,+). It is easy to see that
f is bijective. It follows that (R, ∗) is a group and that it is
isomorphic to the group (R,+).



Problem 1b. Consider a binary operation ∗ on R

given by x ∗ y = y for all x , y ∈ R. Is (R, ∗) a

semigroup? Is it a group?

Clearly, x ∗ y ∈ R for all x , y ∈ R so that the operation is
well defined. Further, for any x , y , z ∈ R we have
(x ∗ y ) ∗ z = y ∗ z = z and x ∗ (y ∗ z) = x ∗ z = z . Hence
(x ∗ y ) ∗ z = x ∗ (y ∗ z), the operation is associative.

By definition of the operation, every element is a left identity.
It follows that there is no right identity (and hence this is not
a group). Indeed, if eℓ is any left identity and er is any right
identity, then er = eℓ ∗ er = eℓ.



Problem 3b. We have the following information on a group
G and its subgroups H1 and H2:

◮ the order of G is either 15 or 20 or 25,

◮ H1 and H2 are proper subgroups of different orders and
neither of them contains the other,

◮ the intersection H1 ∩ H2 is a nontrivial subgroup of G .

Find the order of H1 ∩ H2.



Let n denote the order of the group G , let m1 and m2 denote
orders of the subgroups H1 and H2, and let k denote the order of
the intersection H1 ∩ H2. We are given that n = 15 or 20 or 25,
that m1 < n and m2 < n, that m1 6= m2, and that k > 1.

By Lagrange’s Theorem, the order of a subgroup divides the order
of the group. In particular, m1 and m2 are proper divisors of n.
Since neither of the subgroups H1 and H2 contains the other, their
intersection H1 ∩ H2 is a proper subgroup of H1 and of H2. By
Lagrange’s Theorem, k is a proper divisor of m1 and of m2. Since
k > 1, it follows that neither m1 nor m2 is a prime number or 1.

Now we obtain that n cannot be 15 or 25 as any proper divisor of
these numbers is either prime or 1. Therefore n = 20. The number
20 has only two proper divisors which are composite numbers: 4
and 10. Hence one of them is m1 and the other is m2. Finally, k is
a common divisor of 4 and 10. Since k > 1, we obtain that k = 2.

Remark. The group G in this problem can be, for example,
Z2 × Z2 × Z5. Then H1 = Z2 × Z2 × {0}, H2 = {0} × Z2 × Z5

and H1 ∩ H2 = {0} × Z2 × {0}.



Problem. Find two non-abelian groups of order 24

that are not isomorphic to each other.

It is known that groups of order 24 form 15
isomorphism classes. Three of them are abelian

groups, represented by Z3 ×Z8, Z3 × Z4 ×Z2, and
Z3 × Z2 × Z2 × Z2.

The other 12 classes are non-abelian groups.

Representatives for some of them are: S4, A4 × Z2,
S3 × Z4, S3 × Z2 × Z2, D12, D4 × Z3, and

SL(2,Z3).



Rings

Definition. A ring is a set R , together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that
• R is an abelian group under addition,
• R is a semigroup under multiplication,
• multiplication distributes over addition.

The complete list of axioms is as follows:
(A0) for all x , y ∈ R , x + y is an element of R ;
(A1) (x + y) + z = x + (y + z) for all x , y , z ∈ R ;
(A2) there exists an element, denoted 0, in R such that
x + 0 = 0 + x = x for all x ∈ R ;
(A3) for every x ∈ R there exists an element, denoted −x , in R

such that x + (−x) = (−x) + x = 0;
(A4) x + y = y + x for all x , y ∈ R ;
(M0) for all x , y ∈ R , xy is an element of R ;
(M1) (xy)z = x(yz) for all x , y , z ∈ R ;
(D) x(y+z) = xy+xz and (y+z)x = yx+zx for all x , y , z ∈ R .



Fields

Definition. A field is a set F , together with two binary
operations called addition and multiplication and denoted
accordingly, such that

• F is an abelian group under addition,
• F \ {0} is an abelian group under multiplication,
• multiplication distributes over addition.

In other words, the field is a commutative ring with unity
(1 6= 0) such that any nonzero element has a multiplicative
inverse.

Examples. • Real numbers R.

• Rational numbers Q.

• Complex numbers C.

• Zp: congruence classes modulo p, where p is prime.

• R(X ): rational functions in variable X with real coefficients.



Vector spaces over a field

Definition. Given a field F , a vector space V over F is an
additive abelian group endowed with a mixed operation
φ : F × V → V called scalar multiplication or scaling.

Elements of V and F are referred to respectively as vectors
and scalars. The scalar multiple φ(λ, v ) is denoted λv .

The scalar multiplication is to satisfy the following axioms:

(V0) for all v ∈ V and λ ∈ F , λv is an element of V ;
(V1) λ(v + w) = λv + λw for all v ,w ∈ V and λ ∈ F ;
(V2) (λ+ µ)v = λv + µv for all v ∈ V and λ, µ ∈ F ;
(V3) λ(µv ) = (λµ)v for all v ∈ V and λ, µ ∈ F ;
(V4) 1v = v for all v ∈ V .

(Almost) all linear algebra developed for vector spaces over R
can be generalized to vector spaces over an arbitrary field F .
This includes: linear independence, span, basis, dimension,
determinants, matrices, eigenvalues and eigenvectors.



Examples of vector spaces over a field F :

• The space F n of n-dimensional coordinate

vectors (x1, x2, . . . , xn) with coordinates in F .

• The space Mn,m(F ) of n×m matrices with
entries in F .

• The space F [X ] of polynomials
p(x) = a0+ a1X + · · ·+ anX

n with coefficients in F .

• Any field F ′ that is an extension of F (i.e.,

F ⊂ F ′ and the operations on F are restrictions of
the corresponding operations on F ′). In particular,

C is a vector space over R and over Q, R is a
vector space over Q.



Linear independence over Q

Since the set R of real numbers and the set Q of rational
numbers are fields, we can regard R as a vector space over Q.
Real numbers r1, r2, . . . , rn are said to be linearly
independent over Q if they are linearly independent as
vectors in that vector space.

Example. 1 and
√
2 are linearly independent over Q.

Assume a · 1 + b
√
2 = 0 for some a, b ∈ Q. We have to

show that a = b = 0.

Indeed, b = 0 as otherwise
√
2 = −a/b, a rational number.

Then a = 0 as well.

In general, two nonzero real numbers r1 and r2 are linearly
independent over Q if r1/r2 is irrational.



Linear independence over Q

Example. 1,
√
2, and

√
3 are linearly independent over Q.

Assume a + b
√
2 + c

√
3 = 0 for some a, b, c ∈ Q.

We have to show that a = b = c = 0.

a + b
√
2 + c

√
3 = 0 =⇒ a + b

√
2 = −c

√
3

=⇒ (a + b
√
2)2 = (−c

√
3)2

=⇒ (a2 + 2b2 − 3c2) + 2ab
√
2 = 0.

Since 1 and
√
2 are linearly independent over Q, we obtain

a2 + 2b2 − 3c2 = 2ab = 0. In particular, a = 0 or b = 0.

Then a + c
√
3 = 0 or b

√
2 + c

√
3 = 0. However 1 and

√
3

are linearly independent over Q as well as
√
2 and

√
3. Thus

a = b = c = 0.



Finite fields

Theorem 1 Any finite field F has nonzero characteristic.

Proof: Consider a sequence 1, 1+1, 1+1+1, . . . Since F is
finite, there are repetitions in this sequence. Clearly, the
difference of any two elements is another element of the
sequence. Hence the sequence contains 0 so that the
characteristic of F is nonzero.

Theorem 2 The number of elements in a finite field F is pk ,
where p is a prime number.

Proof: Let p be the characteristic of F . By the above,
p > 0. As we know from the previous lecture, p is prime.
Let F ′ be the set of all elements 1, 1+1, 1+1+1, . . . Clearly,
F ′ consists of p elements. One can show that F ′ is a subfield
(canonically identified with Zp). It follows that F has pk

elements, where k = dimF as a vector space over F ′.



Algebra over a field

Definition. An algebra A over a field F (or F -algebra) is a
vector space over F with a multiplication which is a bilinear
operation on A. That is, the product xy is both a linear
function of x and a linear function of y .

To be precise, the following axioms are to be satisfied:

(A0) for all x , y ∈ A, the product xy is an element of A;
(A1) x(y+z) = xy+xz and (y+z)x = yx+zx for x , y , z ∈A;
(A2) (λx)y = λ(xy ) = x(λy ) for all x , y ∈ A and λ ∈ F .

An F -algebra is associative if the multiplication is associative.
An associative algebra is both a vector space and a ring.

An F -algebra A is a Lie algebra if the multiplication (usually
denoted [x , y ] and called Lie bracket in this case) satisfies:

(Antisymmetry): [x , y ] = −[y , x ] for all x , y ∈ A;
(Jacobi’s identity): [[x , y ], z ] + [[y , z ], x ] + [[z , x ], y ] = 0
for all x , y , z ∈ A.



Examples of associative algebras:

• The space Mn(F ) of n×n matrices with entries in F .

• The space F [X ] of polynomials
p(x) = a0 + a1X + · · ·+ anX

n with coefficients in F .

• The space of all functions f : S → F on a set S taking
values in a field F .

• Any field F ′ that is an extension of a field F is an
associative algebra over F .

Examples of Lie algebras:

• R3 with the cross product is a Lie algebra over R.

• Any associative algebra A with a Lie bracket (called the
commutator) defined by [x , y ] = xy − yx .


