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Modern Algebra I

Lecture 15:
Rings and fields (continued).

Field of quotients.



Rings

Definition. A ring is a set R , together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that
• R is an abelian group under addition,
• R is a semigroup under multiplication,
• multiplication distributes over addition.

The complete list of axioms is as follows:
(A0) for all x , y ∈ R , x + y is an element of R ;
(A1) (x + y) + z = x + (y + z) for all x , y , z ∈ R ;
(A2) there exists an element, denoted 0, in R such that
x + 0 = 0 + x = x for all x ∈ R ;
(A3) for every x ∈ R there exists an element, denoted −x , in R

such that x + (−x) = (−x) + x = 0;
(A4) x + y = y + x for all x , y ∈ R ;
(M0) for all x , y ∈ R , xy is an element of R ;
(M1) (xy)z = x(yz) for all x , y , z ∈ R ;
(D) x(y+z) = xy+xz and (y+z)x = yx+zx for all x , y , z ∈ R .



From rings to fields

A ring R is called a domain if it has no divisors of zero, that
is, xy = 0 implies x = 0 or y = 0.

A ring R is called a ring with unity if there exists an identity
element for multiplication (called the unity and denoted 1).

A division ring (or skew field) is a nontrivial ring with unity
in which every nonzero element has a multiplicative inverse.

A ring R is called commutative if the multiplication is
commutative.

An integral domain is a nontrivial commutative ring with
unity and no divisors of zero.

A field is an integral domain in which every nonzero element
has a multiplicative inverse (equivalently, a commutative
division ring).

rings ⊃ domains ⊃ integral domains ⊃ fields
⊃ division rings ⊃



Ring of functions

Let R be a ring and S be a nonempty set. Denote by F(S ,R)
the set of all functions f : S → R . Given f , g ∈ F(S ,R), we
let (f + g)(x) = f (x) + g(x) and (fg)(x) = f (x)g(x) for all
x ∈ S . That is, to add (or multiply) functions, we add (or
multiply) their values at every point. Then F(S ,R) is a ring.

The ring F(S ,R) inherits many properties from the ring R ,
with one important exception. If R is a nontrivial ring and S

has more than one element, then the ring F(S ,R) has
divisors of zero. Indeed, take any point x0 ∈ S , any nonzero
element r ∈ R , and let

f1(x) =

{
r if x = x0,
0 if x ∈ S \ {x0}; f2(x) =

{
0 if x = x0,
r if x ∈ S \ {x0}.

Then the functions f1 and f2 are nonzero elements of the ring
F(S ,R) while f1f2 = 0.



Ring of matrices

Let R be a ring. For any integers m, n > 0, denote by
Mm,n(R) the set of all m×n matrices with entries from R .
Given two matrices A = (aij) and B = (bij) in Mm,n(R), we
let A+ B = (cij) and A− B = (dij), where cij = aij + bij
and dij = aij − bij , 1 ≤ i ≤ m, 1 ≤ j ≤ n. Given matrices
A = (aij) ∈ Mm,n(R) and B = (bij) ∈ Mn,p(R), we let
AB = (cij), where cij = ai1b1j + ai2b2j + · · ·+ ainbnj ,
1 ≤ i ≤ m, 1 ≤ j ≤ p.

Matrix multiplication is associative. Indeed, let A = (aij)
∈ Mm,n(R), B = (bjk) ∈ Mn,p(R) and C = (ckℓ) ∈ Mp,q(R).
Then (AB)C = (diℓ) and A(BC ) = (d ′

iℓ) are matrices in
Mn,q(R). Using distributive laws in R , we obtain that

diℓ =
∑p

k=1

∑n

j=1
(aijbjk)ckℓ, d ′

iℓ =
∑n

j=1

∑p

k=1
aij(bjkckℓ).

Hence (AB)C = A(BC ) since R is a ring.

As a consequence, square matrices in Mn,n(R) form a ring.



Direct product of rings

Suppose R1,R2, . . . ,Rn are rings. We define addition and
multiplication on the Cartesian product R1 × R2 × · · · × Rn by

(r1, r2, . . . , rn) + (r ′1, r
′

2, . . . , r
′

n) = (r1 + r ′1, r2 + r ′2, . . . , rn + r ′n),

(r1, r2, . . . , rn)(r
′

1, r
′

2, . . . , r
′

n) = (r1r
′

1, r2r
′

2, . . . , rnr
′

n)

for all ri , r
′

i ∈ Ri , 1 ≤ i ≤ n.

Then R1 × R2 × · · · × Rn is a ring called the direct product
of rings R1,R2, . . . ,Rn.

The ring R1 × R2 × · · · × Rn is commutative if each of the
rings R1,R2, . . . ,Rn is commutative. It is a ring with unity if
each of the rings R1,R2, . . . ,Rn has the unity.

If at least two of the rings R1,R2, . . . ,Rn are nontrivial, then
the direct product R1 × R2 × · · · × Rn admits divisors of zero.



Complex numbers

C: complex numbers.

Complex number: z = x + iy ,

where x , y ∈ R and i 2 = −1.

i =
√
−1: imaginary unit

Alternative notation: z = x + yi .

x = real part of z ,
iy = imaginary part of z

y = 0 =⇒ z = x (real number)
x = 0 =⇒ z = iy (purely imaginary number)



We add, subtract, and multiply complex numbers as

polynomials in i (but keep in mind that i 2 = −1).

If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) + i(y1 + y2),

z1 − z2 = (x1 − x2) + i(y1 − y2),

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

Given z = x + iy , the complex conjugate of z is

z̄ = x − iy . The modulus of z is |z | =
√

x2 + y 2.

zz̄ = (x + iy)(x − iy) = x2− (iy)2 = x2+ y 2 = |z |2.

z−1 =
z̄

|z |2 , (x + iy)−1 =
x − iy

x2 + y 2
.



Complex exponentials

Definition. For any z ∈ C let

ez = 1 + z +
z2

2!
+ · · ·+ zn

n!
+ · · ·

Remark. A sequence of complex numbers
z1 = x1 + iy1, z2 = x2 + iy2, . . . converges

to z = x + iy if xn → x and yn → y as n → ∞.

Theorem 1 If z = x + iy , x , y ∈ R, then

ez = ex(cos y + i sin y).

In particular, e iφ = cosφ+ i sinφ, φ ∈ R.

Theorem 2 ez+w = ez · ew for all z ,w ∈ C.



Proposition e iφ = cosφ+ i sinφ for all φ ∈ R.

Proof: e iφ = 1 + iφ+
(iφ)2

2!
+ · · ·+ (iφ)n

n!
+ · · ·

The sequence 1, i , i 2, i 3, . . . , in, . . . is periodic:
1, i ,−1,−i
︸ ︷︷ ︸

, 1, i ,−1,−i
︸ ︷︷ ︸

, . . .

It follows that

e iφ = 1− φ2

2!
+

φ4

4!
− · · ·+ (−1)k

φ2k

(2k)!
+ · · ·

+ i

(

φ− φ3

3!
+

φ5

5!
− · · ·+ (−1)k

φ2k+1

(2k + 1)!
+ · · ·

)

= cosφ+ i sinφ.



Geometric representation

Any complex number z = x + iy is represented by

the vector/point (x , y) ∈ R2.

y

x0

r

φ
0

x = r cosφ, y = r sinφ =⇒ z = r(cosφ+ i sinφ) = re iφ

If z1 = r1e
iφ1 and z2 = r2e

iφ2, then
z1z2 = r1r2e

i(φ1+φ2), z1/z2 = (r1/r2)e
i(φ1−φ2).



From a ring to a field

Question 1. When a ring R can be extended to a field?

An obvious necessary condition is commutativity. Another
necessary condition is absence of zero divisors (which is
equivalent to cancellation laws).

Proposition If an element of a ring with unity has a
multiplicative inverse, then it is not a divisor of zero.

Question 2. When a semigroup S can be extended to a
group?

Theorem If S is a commutative semigroup with cancellation,
then it can be extended to an abelian group G . Moreover, if
G = 〈S〉, then any element of G is of the form b−1a, where
a, b ∈ S . Moreover, if G = 〈S〉, then the group G is unique
up to isomorphism.



Theorem Any finite semigroup with cancellation is

actually a group.

Lemma If S is a finite semigroup with
cancellation, then for any s ∈ S there exists an

integer k ≥ 2 such that sk = s.

Proof: Since S is finite, the sequence s, s2, s3, . . . contains
repetitions, i.e., sk = sm for some k > m ≥ 1. If m = 1
then we are done. If m > 1 then sm−1sk−m+1 = sm−1s,
which implies sk−m+1 = s.

Proof of the theorem: Take any s ∈ S . By Lemma, we have
sk = s for some k ≥ 2. Then e = sk−1 is the identity
element. Indeed, for any g ∈ S we have skg = sg or,
equivalently, s(eg) = sg . After cancellation, eg = g .
Similarly, ge = g for all g ∈ S . Finally, for any g ∈ S there
is n ≥ 2 such that g n = g = ge. Then g n−1 = e, which
implies that g n−2 = g−1.



Field of quotients

Theorem A ring R with unity can be extended to
a field if and only if it is an integral domain.

If R is an integral domain, then there is a (smallest)

field F containing R called the quotient field of R
(or the field of quotients). Any element of F is

of the form b−1a, where a, b ∈ R. The field F is
unique up to isomorphism.

Examples. • The quotient field of Z is Q.

• The quotient field of R[X ] is R(X ).
• The quotient field of Z[

√
2] = {m + n

√
2 |

m, n ∈ Z} is Q[
√
2] = {p + q

√
2 | p, q ∈ Q}.


