MATH 415
Modern Algebra |

Lecture 15:
Rings and fields (continued).
Field of quotients.



Rings

Definition. A ring is a set R, together with two binary
operations usually called addition and multiplication and
denoted accordingly, such that

e R is an abelian group under addition,

e R is a semigroup under multiplication,

e multiplication distributes over addition.

The complete list of axioms is as follows:

(AO0) for all x,y € R, x+y is an element of R;

(Al) (x+y)+z=x+(y+z) forall x,y,z€R;

(A2) there exists an element, denoted 0, in R such that
X+0=0+x=x forall xe€R;

(A3) for every x € R there exists an element, denoted —x, in R
such that x4+ (—x) = (—x) +x=0;

(A4) x+y=y+x forall x,y €R;

(MO) for all x,y € R, xy is an element of R;

(M1) (xy)z = x(yz) forall x,y,z € R;

(D) x(y+z) = xy+xz and (y+z)x = yx+zx forall x,y,z € R.



From rings to fields

A ring R is called a domain if it has no divisors of zero, that
is, xy =0 implies x=0 or y =0.

A ring R is called a ring with unity if there exists an identity
element for multiplication (called the unity and denoted 1).
A division ring (or skew field) is a nontrivial ring with unity
in which every nonzero element has a multiplicative inverse.

A ring R is called commutative if the multiplication is
commutative.

An integral domain is a nontrivial commutative ring with
unity and no divisors of zero.

A field is an integral domain in which every nonzero element
has a multiplicative inverse (equivalently, a commutative
division ring).
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Ring of functions

Let R be a ring and S be a nonempty set. Denote by F(S, R)
the set of all functions f: S — R. Given f,g € F(S,R), we
let (f 4 g)(x) = f(x)+g(x) and (fg)(x) = f(x)g(x) for all
x € S. Thatis, to add (or multiply) functions, we add (or

multiply) their values at every point. Then F(S,R) is a ring.

The ring F(S, R) inherits many properties from the ring R,
with one important exception. If R is a nontrivial ring and S
has more than one element, then the ring F(S, R) has
divisors of zero. Indeed, take any point xy € S, any nonzero
element r € R, and let

o if x=xo, 0 if x=xo,
Alx) = {0 if xe S\ {x}; hx) = {r if xe S\ {x}.
Then the functions f; and f, are nonzero elements of the ring
F(S,R) while fif, = 0.



Ring of matrices

Let R be a ring. For any integers m, n > 0, denote by

M n(R) the set of all mxn matrices with entries from R.
Given two matrices A = (a;) and B = (b;) in My, .(R), we
let A+ B =(c;j) and A— B =(d;), where ¢; = a;; + b;
and dj =a; —bj, 1 <i<m, 1<j<n. Given matrices
A= (a;) € Mpua(R) and B = (b;) € M, ,(R), we let

AB = (C,'J'), where Cij = a,-1b1j + a,'2b2_,' +--- 4 a,-,,b,,j,
1<i<m 1<j<p

Matrix multiplication is associative. Indeed, let A = (aj)

c Mm,n(R), B = (bjk) c Mmp(R) and C = (Ckg) S Mp,q(R).
Then (AB)C = (di) and A(BC) = (d!,) are matrices in

M., 4(R). Using distributive laws in R, we obtain that

die = poy > (@b ke, dip =271 iy ai(bixcke).
Hence (AB)C = A(BC) since R is a ring.
As a consequence, square matrices in M, ,(R) form a ring.



Direct product of rings

Suppose Ry, R, ..., R, are rings. We define addition and
multiplication on the Cartesian product Ry x R, X --- X R, by

(ryryeeoytn)+ (i) =(n+r,n+r....m+r),
(r,ry e ta)(r, 0, rh) = (i, Ry, rar))
forall ri,rle R, 1<i<n.

Then Ry x R, X -+ x R, is a ring called the direct product
of rings Ry, Ry, ..., R,.

The ring Ry X Ry X -+ X R, is commutative if each of the
rings Ry, R, ..., R, is commutative. It is a ring with unity if
each of the rings Ry, R,,..., R, has the unity.

If at least two of the rings Ry, R», ..., R, are nontrivial, then
the direct product R; X Ry, X --- X R, admits divisors of zero.



Complex numbers

C: complex numbers.

Complex number: |z = x + iy,

where x,y € R and 2 = —1.
I = +/—1: imaginary unit
Alternative notation: z = x + yi.

x = real part of z,
Iy = imaginary part of z

y =0 = z = x (real number)
x =0 = z =iy (purely imaginary number)



We add, subtract, and multiply complex numbers as
polynomials in i (but keep in mind that 2 = —1).

If 2z =x1 +iy1 and 2z = x» + iy», then
21+ 2= (x1+x)+i(y1+ ),
21— 2= (x1—x)+i()1 — y2),
212 = (x1x2 — y1y2) + i(x1y2 + xoy1).

Given z = x + iy, the complex conjugate of z is
Z=x—1Iy. The modulus of z is |z| = \/x% + y2.
2z = (x+iy)(x—iy) = x* = (iy)? = x* + y* = [2]*.

_1 z —ly

_ < 1_
z 27 (x+iy)~ x2—|—y




Complex exponentials

Definition. For any z € C let
2 n

z z
ec=14+z24+—4+--4+—=4...

2! n!
Remark. A sequence of complex numbers
z1=x1+ iy1, 2o = Xo + Iy»,... converges

to z=x-+1Iy if x,—x and y, =y as n — <.

Theorem 1 If z=x+ iy, x,y € R, then
e’ = e*(cosy + isiny).

In particular, e'® =cos¢ + ising, ¢ € R.

Theorem 2 e*™" = ¢e?.¢e" forall z,w € C.



Proposition €' = cos¢ +ising forall ¢ € R.

F 1)2 F\n
Proof- e’¢:1+i¢+(1§) +---+(If|) + -
The sequence 1,7,i%,i3,...,i", ... is periodic:
}7i7_1a_£7}7i7_1a_£7"'
It follows that
" 2 4 L ¢2k
i — 12 47 o4(—1
€ o1 T +(=1) 2K
. ¢3 ¢5 p ¢2k+1
S T S G Y, S N B
+'<¢ 31 "5l TV Gt

= COS ¢ + i sin ¢.



Geometric representation

Any complex number z = x + iy is represented by
the vector/point (x,y) € R

A

y

X=rcos¢, y=rsing = z = r(cos¢+isin¢) = re
If z; = ne'® and z, = rRe'®, then
212y = rre91F%) 7 /7 = (r/r)el(®1792),



From a ring to a field

Question 1. When a ring R can be extended to a field?

An obvious necessary condition is commutativity. Another
necessary condition is absence of zero divisors (which is
equivalent to cancellation laws).

Proposition If an element of a ring with unity has a
multiplicative inverse, then it is not a divisor of zero.

Question 2. When a semigroup S can be extended to a
group?

Theorem If S is a commutative semigroup with cancellation,
then it can be extended to an abelian group G. Moreover, if

G = (S), then any element of G is of the form b~'a, where

a,beS. Moreover, if G =(S), then the group G is unique

up to isomorphism.



Theorem Any finite semigroup with cancellation is
actually a group.

Lemma If S is a finite semigroup with
cancellation, then for any s € S there exists an

integer k > 2 such that sX =s.

Proof: Since S is finite, the sequence s, s?, s, ... contains

repetitions, i.e., sk =s™ forsome k>m>1. If m=1
then we are done. If m > 1 then s 1lsk—m+l = gm-lg
which implies sk=™+1 = 5.

Proof of the theorem: Take any s € S. By Lemma, we have
sk = s for some k > 2. Then e = s~ is the identity
element. Indeed, for any g € S we have sg = sg or,
equivalently, s(eg) = sg. After cancellation, eg = g.
Similarly, ge = g for all g € S. Finally, for any g € S there
is n>2 such that g" = g = ge. Then g"! = e, which
implies that g" 2 = g~ 1.



Field of quotients

Theorem A ring R with unity can be extended to
a field if and only if it is an integral domain.

If R is an integral domain, then there is a (smallest)
field F containing R called the quotient field of R
(or the field of quotients). Any element of F is
of the form b~'a, where a,b € R. The field F is
unique up to isomorphism.

Examples. e The quotient field of Z is Q.

e The quotient field of R[X] is R(X).

e The quotient field of Z[v/2] = {m + n/2 |
m,neZ} is Q[V2] ={p+qv2|p,qcQ}



