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Lecture 21:
Follow-up on Exam 2.
Homomorphisms of rings.



Follow-up on Exam 2

Problem. Let M be the set of all numbers of the
form m + nv/3, where m and n are integers of the
same parity. Under the usual addition and
multiplication, is M a ring? Is it a field?

First let us get a better formula for a general element of M.
If m and n are integers of the same parity, then m = n+ 2k
for some k € Z. Consequently, m+ nv/3 = 2k + (1 ++/3)n.
In the latter representation, k and n can be arbitrary integers.

To check whether M is a ring is to check whether it is a
subring of R. For the latter, we only need to check if it is
closed under addition, subtraction and multiplication.



Let x1,x € M. We have x; = 2k + (1 4+ v/3)n; and
Xy = 2ko + (1 ++/3)n, for some ki, ny, ko, np € Z. Then

X1+ Xp = 2(k1 + kz) + (1 + \/§)(n1 + nz),
x; —xp = 2(k1 — ko) + (1 + v/3)(ny — my),

X1Xp = 4k1k2 + 2(1 + \/§)(k1n2 + n1k2) + (1 -+ \/5)2n1n2
= 2(2k1k2) + (1 + \/§)(2k1n2 + 2!71/(2) + (4 + 2\/§)n1n2
= 2(2k1k2 + n1n2) + (1 + \/5)(2k1n2 + 2[71/(2 -+ 2[71[72).

We conclude that M is a ring. However M is not a ring with

unity since it does not contain 1. In particular, M is not a
field.

Remark. In general, if a subring Ry of a ring R with unity
does not contain the unity 1z of R, it may still have its own
unity 1g,. But this is never the case if R is a domain (and
hence satisfies cancellation laws). Indeed, we would have
1r,1gr, = 1g, = 1glg, and, after cancellation, 1g, = 1g.



Problem. Let [F4, be a field with 4 elements and
[F, be its subfield with 2 elements. Find a
polynomial p € F,[x] that has no zeros in [F, but
has a zero in [Fy.

Let Fy = {0,1,a,b}. Then F, = {0,1}. Since {1,a, b} is

a multiplicative group (of order 3), it follows from Lagrange's

Theorem that x®> =1 for all x € {1, a, b}. In other words, 1,
a and b are zeros of the polynomial g(x) = x® — 1.

We have x* —1 = (x — 1)(x* + x + 1), which holds over any
field. It follows that a and b are also zeros of the polynomial
p(x) = x* + x + 1. Note that p(0) = p(1) =1 #0.



Homomorphism of rings

Definition. Let R and R’ be rings. A function f: R — R’ is
called a homomorphism of rings if f(r;+r) = f(rn)+f(r)
and f(rnrn)=f(n)f(r) forall n,rnecR.

That is, f is a homomorphism of the binary structure (R, +)
to (R, +) and, simultaneously, a homomorphism of the binary
structure (R,-) to (R',-). In particular, f is a homomorphism
of additive groups, which implies the following properties:

e f(0)=0,

o f(—r)=—f(r) forall reR,

e if H is an additive subgroup of R then f(H) is an additive
subgroup of R/,

e if H' is an additive subgroup of R’ then f=*(H') is an
additive subgroup of R,

e 71(0) is an additive subgroup of R, called the kernel of
f and denoted Ker(f).



More properties of homomorphisms

Let f: R — R’ be a homomorphism of rings.

e If H is a subring of R, then f(H) is a subring of R’.

We already know that f(H) is an additive subgroup of R’. It
remains to show that it is closed under multiplication in R'.
Let r{,ry; € f(H). Then r{ =f(r1) and r} = f(r,) for some
r,rn € H. Hence riry = f(r)f(rn) = f(rir2), which is in
f(H) since H is closed under multiplication in R.

e If H'is a subring of R’, then f~'(H') is a subring of R.

We already know that f~1(H’) is an additive subgroup of R.
It remains to show that it is closed under multiplication in R.
Let i, € fY(H'), thatis, f(r),f(r) € H. Then
f(rir) = f(rn)f(ry) is in H' since H' is closed under
multiplication in R'. Hence rir, € f~}(H').



More properties of homomorphisms
o If H' is a left ideal in R', then f~1(H') is a left
ideal in R.

We already know that f~1(H’) is a subring of R. It remains
to show that r € R and a € f~*(H') imply ra e f~1(H').
We have f(a) € H'. Then f(ra) = f(r)f(a) is in H' since H’
is a left ideal in R’. In other words, ra € f=(H').

e If H'is a right ideal in R, then f~1(H’) is a
right ideal in R.

o If H"is a two-sided ideal in R’, then f~1(H') is
a two-sided ideal in R.

e The kernel Ker(f) is a two-sided ideal in R.
Indeed, Ker(f) is the pre-image of the trivial ideal {0} in R’



More properties of homomorphisms

e If an element a € R is idempotent in R (that is, a®> = a)
then f(a) is idempotent in R’

Indeed, (f(a))? = f(a%) = f(a).
e If 1g is the unity in R then f(1g) is the unity in f(R).

Let r' € f(R). Then r' = f(r) for some r € R. We obtain
r'f(lg) = f(r)f(1gr) = f(r-1g) = f(r) = r and
F(Lr)r" = f(1R)f(r) = f(1g - r) = f(r) =

e If 1g is the unity in R and R’ is a domain with unity, then
either f(1g) is the unity in R’ or else the homomorphism f is
identically zero.

If f(1g) =0 then f is identically zero: f(r) = f(r-1g) =

f(r)f(1g) =f(r)-0=0 for all r € R. Otherwise f(1g) is a
nonzero idempotent element. We know that in a domain with
unity, the only idempotent elements are the zero and the unity.



Examples of homomorphisms

e Trivial homomorphism.

Given any rings R and R', let f(r) = Og for all r € R, where
Ogr' is the zero element in R. Then f : R — R’ is a
homomorphism of rings.

e Residue modulo n of an integer.

For any k € Z let f(k) be the remainder of k after division by
n. Then f :7Z — Z, is a homomorphism of rings.

e Homomorphisms of Z.

Let R be any ring and i/ be any idempotent element in R.
Then there exists a unique homomorphism f : Z — R such
that f(1) =i. It can be defined inductively: f(1) =i,
f(k+1)=f(k)+i forall k>1, f(0)=0 and

f(—k) = —f(k) forall k> 1.



Suppose f : R — R’ is a homomorphism of rings. It induces
homomorphisms of certain rings built from R and R'.

e Rings of functions.

Given a nonempty set S, let F(S, R) be the ring of all
functions h: S — R. A homomorphism
¢:F(S,R) — F(S,R) is given by ¢(h) = foh.

e Rings of polynomials.

A homomorphism ¢ : R[x] — R[] is given by
¢(30 + aix + 32X2 4+ 4 aan) _
fao) + f(ar)x + f(ax)x® + - - + f(an)x".

e Rings of matrices.

Let M, ,(R) be the ring of all nxn matrices with entries
from R. A homomorphism ¢ : M, ,(R) — M, .(R’) is given
by &((ag)i<ij<n) = (F(ay))1<ijn:



