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Modern Algebra I

Lecture 21:

Follow-up on Exam 2.

Homomorphisms of rings.



Follow-up on Exam 2

Problem. Let M be the set of all numbers of the
form m + n

√
3, where m and n are integers of the

same parity. Under the usual addition and

multiplication, is M a ring? Is it a field?

First let us get a better formula for a general element of M .
If m and n are integers of the same parity, then m = n + 2k
for some k ∈ Z. Consequently, m + n

√
3 = 2k + (1 +

√
3)n.

In the latter representation, k and n can be arbitrary integers.

To check whether M is a ring is to check whether it is a
subring of R. For the latter, we only need to check if it is
closed under addition, subtraction and multiplication.



Let x1, x2 ∈ M . We have x1 = 2k1 + (1 +
√
3)n1 and

x2 = 2k2 + (1 +
√
3)n2 for some k1, n1, k2, n2 ∈ Z. Then

x1 + x2 = 2(k1 + k2) + (1 +
√
3)(n1 + n2),

x1 − x2 = 2(k1 − k2) + (1 +
√
3)(n1 − n2),

x1x2 = 4k1k2 + 2(1 +
√
3)(k1n2 + n1k2) + (1 +

√
3)2n1n2

= 2(2k1k2) + (1 +
√
3)(2k1n2 + 2n1k2) + (4 + 2

√
3)n1n2

= 2(2k1k2 + n1n2) + (1 +
√
3)(2k1n2 + 2n1k2 + 2n1n2).

We conclude that M is a ring. However M is not a ring with
unity since it does not contain 1. In particular, M is not a
field.

Remark. In general, if a subring R0 of a ring R with unity
does not contain the unity 1R of R , it may still have its own
unity 1R0

. But this is never the case if R is a domain (and
hence satisfies cancellation laws). Indeed, we would have
1R0

1R0
= 1R0

= 1R1R0
and, after cancellation, 1R0

= 1R .



Problem. Let F4 be a field with 4 elements and

F2 be its subfield with 2 elements. Find a
polynomial p ∈ F2[x ] that has no zeros in F2, but

has a zero in F4.

Let F4 = {0, 1, a, b}. Then F2 = {0, 1}. Since {1, a, b} is
a multiplicative group (of order 3), it follows from Lagrange’s
Theorem that x3 = 1 for all x ∈ {1, a, b}. In other words, 1,
a and b are zeros of the polynomial q(x) = x3 − 1.

We have x3 − 1 = (x − 1)(x2 + x + 1), which holds over any
field. It follows that a and b are also zeros of the polynomial
p(x) = x2 + x + 1. Note that p(0) = p(1) = 1 6= 0.



Homomorphism of rings

Definition. Let R and R ′ be rings. A function f : R → R ′ is
called a homomorphism of rings if f (r1 + r2) = f (r1) + f (r2)
and f (r1r2) = f (r1)f (r2) for all r1, r2 ∈ R .

That is, f is a homomorphism of the binary structure (R ,+)
to (R ′,+) and, simultaneously, a homomorphism of the binary
structure (R , ·) to (R ′, ·). In particular, f is a homomorphism
of additive groups, which implies the following properties:

• f (0) = 0,
• f (−r) = −f (r) for all r ∈ R ,
• if H is an additive subgroup of R then f (H) is an additive

subgroup of R ′,
• if H ′ is an additive subgroup of R ′ then f −1(H ′) is an

additive subgroup of R ,
• f −1(0) is an additive subgroup of R , called the kernel of

f and denoted Ker(f ).



More properties of homomorphisms

Let f : R → R ′ be a homomorphism of rings.

• If H is a subring of R , then f (H) is a subring of R ′.

We already know that f (H) is an additive subgroup of R ′. It
remains to show that it is closed under multiplication in R ′.
Let r ′

1
, r ′

2
∈ f (H). Then r ′

1
= f (r1) and r ′

2
= f (r2) for some

r1, r2 ∈ H. Hence r ′
1
r ′
2
= f (r1)f (r2) = f (r1r2), which is in

f (H) since H is closed under multiplication in R .

• If H ′ is a subring of R ′, then f −1(H ′) is a subring of R .

We already know that f −1(H ′) is an additive subgroup of R .
It remains to show that it is closed under multiplication in R .
Let r1, r2 ∈ f −1(H ′), that is, f (r1), f (r2) ∈ H ′. Then
f (r1r2) = f (r1)f (r2) is in H ′ since H ′ is closed under
multiplication in R ′. Hence r1r2 ∈ f −1(H ′).



More properties of homomorphisms

• If H ′ is a left ideal in R ′, then f −1(H ′) is a left
ideal in R.

We already know that f −1(H ′) is a subring of R . It remains
to show that r ∈ R and a ∈ f −1(H ′) imply ra ∈ f −1(H ′).
We have f (a) ∈ H ′. Then f (ra) = f (r)f (a) is in H ′ since H ′

is a left ideal in R ′. In other words, ra ∈ f −1(H ′).

• If H ′ is a right ideal in R ′, then f −1(H ′) is a
right ideal in R.

• If H ′ is a two-sided ideal in R ′, then f −1(H ′) is
a two-sided ideal in R.

• The kernel Ker(f ) is a two-sided ideal in R.

Indeed, Ker(f ) is the pre-image of the trivial ideal {0} in R ′.



More properties of homomorphisms

• If an element a ∈ R is idempotent in R (that is, a2 = a)
then f (a) is idempotent in R ′.

Indeed, (f (a))2 = f (a2) = f (a).

• If 1R is the unity in R then f (1R) is the unity in f (R).

Let r ′ ∈ f (R). Then r ′ = f (r) for some r ∈ R . We obtain
r ′f (1R) = f (r)f (1R) = f (r · 1R) = f (r) = r ′ and
f (1R)r

′ = f (1R)f (r) = f (1R · r) = f (r) = r ′.

• If 1R is the unity in R and R ′ is a domain with unity, then
either f (1R) is the unity in R ′ or else the homomorphism f is
identically zero.

If f (1R) = 0 then f is identically zero: f (r) = f (r · 1R) =
f (r)f (1R) = f (r) · 0 = 0 for all r ∈ R . Otherwise f (1R) is a
nonzero idempotent element. We know that in a domain with
unity, the only idempotent elements are the zero and the unity.



Examples of homomorphisms

• Trivial homomorphism.

Given any rings R and R ′, let f (r) = 0R′ for all r ∈ R , where
0R′ is the zero element in R ′. Then f : R → R ′ is a
homomorphism of rings.

• Residue modulo n of an integer.

For any k ∈ Z let f (k) be the remainder of k after division by
n. Then f : Z → Zn is a homomorphism of rings.

• Homomorphisms of Z.

Let R be any ring and i be any idempotent element in R .
Then there exists a unique homomorphism f : Z → R such
that f (1) = i . It can be defined inductively: f (1) = i ,
f (k + 1) = f (k) + i for all k ≥ 1, f (0) = 0 and
f (−k) = −f (k) for all k ≥ 1.



Suppose f : R → R ′ is a homomorphism of rings. It induces
homomorphisms of certain rings built from R and R ′.

• Rings of functions.

Given a nonempty set S , let F(S ,R) be the ring of all
functions h : S → R . A homomorphism
φ : F(S ,R) → F(S ,R ′) is given by φ(h) = f ◦h.

• Rings of polynomials.

A homomorphism φ : R[x ] → R ′[x ] is given by
φ(a0 + a1x + a2x

2 + · · ·+ anx
n) =

f (a0) + f (a1)x + f (a2)x
2 + · · ·+ f (an)x

n.

• Rings of matrices.

Let Mn,n(R) be the ring of all n×n matrices with entries
from R . A homomorphism φ : Mn,n(R) → Mn,n(R

′) is given
by φ

(

(aij)1≤i ,j≤n

)

= (f (aij))1≤i ,j≤n.


