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Lecture 22:
Homomorphisms of rings (continued).
Prime and maximal ideals.



Homomorphism of rings

Definition. Let R and R’ be rings. A function f: R — R’ is
called a homomorphism of rings if f(rn+r) = f(n)+f(r)
and f(nr)=f(n)f(r) forall n,necR.

Properties of homomorphisms:

e If H' is a subring of R’, then f~1(H’) is a subring of R.

o If /" is a two-sided (resp. left, right) ideal in R’, then
f=1(I') is a two-sided (resp. left, right) ideal in R.

e The kernel Ker(f) = f~1(0) is a two-sided ideal in R.

e If His a subring of R, then f(H) is a subring of R’.

e If | is a two-sided (resp. left, right) ideal in R, then f(/) is
a two-sided (resp. left, right) ideal in f(R), but may not be an
ideal in R'.



Given a nonempty set S and a ring R, let F(S, R) be the ring
of all functions h: S — R.

e Evaluation at a point.

Let us fix a point xg € S and define a function
¢ :F(S,R) = R by ¢(h) = h(xp). Then ¢ is a
homomorphism of rings.

e Restriction to a subset.

Let Sp be a nonempty subset of S. A homomorphism
¢ : F(S,R) = F(So, R) is given by ¢(h) = h|s,.

e Extension to a larger set.

Let S; be a set that contains S. For any function h: S — R
let ¢(h) = hy, where the function hy; : S; — R is defined by
hi(x) = h(x) if x € S and hi(x) =0 otherwise. Then

¢ F(S,R) = F(51, R) is a homomorphism of rings.



Isomorphism of rings

Definition. Let R and R’ be rings. A function f: R — R’ is
called an isomorphism of rings if it is bijective and a
homomorphism of rings.

A ring R is said to be isomorphic to a ring R’ if there exists
an isomorphism of rings f: R — R’.

Theorem Isomorphism is an equivalence relation on the set
of all rings.

Theorem The following properties of rings are preserved
under isomorphisms:
e commutativity,
having the unity,
having divisors of zero,
being an integral domain,
being a field.



Fundamental Theorem on Homomorphisms

Theorem Given a homomorphism f: R — R/,
the factor ring R/ Ker(f) is isomorphic to f(R).
Proof. The factor ring is also a factor group. We know from
group theory that an isomorphism of additive groups is given

by ¢(r+ K) = f(r) forany r € R, where K = Ker(f), the
kernel of f. It remains to check that

qb((rl + K)(I’2 + K)) = qb(rl + K)qb(fQ + K)

forall n,rn € R. Indeed, ¢((n+ K)(r.+ K)) = ¢(rnr + K)
= f(nr) = f(n)f(r) = ¢(n + K)o(r + K).

Example:

e Factor ring Z/nZ is isomorphic to Z,.



Matrix model of complex numbers

Consider a function ¢ : C — M, ,(R) given by
S(x +iy) = <X _y)

y x
for all x,y € R. Then ¢ is a homomorphism of rings.

Indeed, for any real numbers x, y, x’ and y’ we have
(x+iy)+ (X" +iy') = (x +x) + i(y +y') and

A AT X' =y"\ _ [(x+x —=(y+VY)
y X y' xX)  \y+y x+x" )
Further, (x +iy)(x'+ iy') = (xx’ — yy') + i(xy’ + yx') and
X —y X' =y"\ _ (xX =y —(xy + yx)
y X y/ X/ - Xy/ + yX/ XX/ _ yy/ .
The kernel Ker(¢) is clearly trivial. It follows that the ring C
is isomorphic to ¢(C). In particular, ¢(C) is a field.



Prime ideals

Definition. A (two-sided) ideal / in a ring R is called prime if
for any elements x,y € R we have

xyel = xeloryel

Example. In the ring Z, every nontrivial proper ideal is of the
form nZ, where n> 1. This ideal is prime if and only if n is
a prime number.

The entire ring R is always a prime ideal of itself. The trivial
ideal {0} is prime if and only if the ring R has no divisors of
zero.

Theorem The ideal / is prime in the ring R if and only if the
factor ring R/l has no divisors of zero.

x+1#0+1 and y+1#0+1 while (x+1)(y+1)=
xy+1 =1 sothat x+/ and y -+ are divisors of zero in R/I.



Maximal ideals

Definition. A (two-sided) ideal / in a ring R is
called maximal if / # R and for any ideal J
satisfying | C J C R, we have J=1 or J=R.

Example. In the ring Z, every nontrivial proper
ideal is of the form nZ, where n > 1. This ideal is
contained in an ideal mZ if and only if m divides n.
It follows that the ideal nZ is maximal if and only if
it is prime.

Theorem A proper ideal / in the ring R is maximal
if and only if the factor ring R/l has no (two-sided)
ideals other than the trivial ideal and itself.



Theorem A proper ideal / in the ring R is maximal
if and only if the factor ring R/l has no (two-sided)
ideals other than the trivial ideal and itself.

Proof. Consider a map ¢ : R — R/l given by ¢(x) = x +/
for all x € R. This map is a homomorphism of rings.

Suppose R/l has a nontrivial proper ideal J'. Then
J=¢7}(J) is anideal in R such that /| C J C R. Since
the map ¢ is onto, it follows that J# / and J# R. In
particular, the ideal / is not maximal.

Conversely, assume that there is an ideal J in R such that

| CJC R while J# 1 and J# R. Then J' = ¢(J) is an
ideal in ¢(R) = R/I. The ideal J' is nontrivial since J is not
contained in the kernel Ker(¢) = 1. Since I C J, it follows
that ¢(J) = J' is disjoint from ¢(R\ J). In particular, J' is
a proper ideal in R/I.



Theorem Suppose R is a commutative ring with
unity. Then R has no (two-sided) ideals other than
the trivial ideal and itself if and only if R is a field.

Proof. Assume R is a field and let / be a nontrivial ideal in R.
Take any nonzero element a € /. Since R is a field, this
element admits a multiplicative inverse a=*. Then for any

x € R we have x = 1x = (aa ')x = a(a~'x) € . That s,

| =R.

Now assume R is not a field. Then there is a nonzero element
a € R that does not admit a multiplicative inverse. Hence
aR = {ax | x € R}, which is an ideal in R, does not contain
the unity 1. In particular, aR is a proper ideal. It is
nontrivial since a=a-1 € aR.



Corollary 1 Suppose R is a commutative ring with
unity. Then a proper ideal /| C R is maximal if and
only if the factor ring R// is a field.

Corollary 2 Suppose R is a commutative ring with
unity. Then any maximal ideal in R is prime.

Remark. If the ring R is not commutative then the
corollaries (and the preceding theorem) may fail.
For example, in the ring M, ,(R) of nxn matrices
with real entries (n > 2), the trivial ideal is maximal
but not prime. Note that this ring does have
one-sided proper nontrivial ideals.



Ideals in the ring of polynomials

Theorem Let [F be a field. Then any ideal in the
ring [F[x] is of the form

p(X)F[x] = {p(x)q(x) | q(x) € Fx]}
for some polynomial p(x) € F[x].

Theorem Let F be a field and p(x) € F[x]| be a
polynomial of positive degree. Then the following
conditions are equivalent:

p(x) is irreducible over F,

the ideal p(x)F[x] is prime,

the ideal p(x)F[x] is maximal,

the factor ring F[x]/p(x)F[x] is a field.



Examples. o F =R, p(x) = x*>+1.

The polynomial p(x) = x>+ 1 is irreducible over R. Hence
the factor ring R[x]//, where | = (x* + 1)R[x], is a field.
Any element of R[x]// is a coset g(x)+ /. It consists of all
polynomials in R[x] leaving a particular remainder when
divided by p(x). Therefore it is uniquely represented as

a-+ bx + | for some a,b € R. We obtain that

(a+bx+ 1)+ (@ +bx+1)=(a+ad)+(b+b)x+1,

(a+bx+ 1)@+ bx+1)=aa + (ab + ba')x + bb'x*> + |
= (aa’ — bb') + (ab' + ba')x + bb'(x* + 1) +
= (aa’ — bb') + (ab' + ba')x + |.

It follows that a map ¢ : C — R[x]// given for all a,b € R
by ¢(a+ bi) =a+ bx+ [ is an isomorphism of rings. Thus
R[x]/! is a model of complex numbers. Note that the
imaginary unit / corresponds to x + /, the coset of the
monomial x.



o F =17 p(x)=x>+x+1.

We have p(0) = p(1) =1 # 0 so that p has no zeros in Z,.
Since deg(p) < 3, it follows that the polynomial p(x) is
irreducible over Z,. Therefore Zs[x]/(x?® + x + 1)Z,[x] is a
field. This factor ring consists of 4 elements: 0, 1, a and
a+ 1, where oo = x + p(x)Zy[x]. Observe that & and a + 1
are zeros of the polynomial p.

o F =7 p(x)=x3+x+1.

There are two polynomials of degree 3 irreducible over Z,:
p(x)=x*+x+1 and g(x) =p(x—1)=x>*+x*>+1. In
particular, the factor ring Z[x]/(x® + x + 1)Z[x] is a field.
It consists of 8 elements: 0, 1, 3, B+ 1, 52, B°+1, 247
and 32+ 3 +1, where 8 = x + p(x)Z[x]. Observe that j3,
B2 and 32 + 3 are zeros of the polynomial p while 5+ 1,
3?41 and B2+ 3+ 1 are zeros of the polynomial g.



