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Lecture 24:
Euclidean algorithm.
Chinese remainder theorem.



Generators of an ideal

Let R be an integral domain.

Theorem 1 Suppose I,, « € A is a nonempty collection of
ideals in R. Then the intersection (1 /I, is also an ideal in R.

Let S be a set (or a list) of some elements of R. The ideal
generated by S, denoted (S) or (S), is the smallest ideal in
R that contains S.

Theorem 2 The ideal (S) is well defined. Indeed, it is the
intersection of all ideals that contain S.

Theorem 3 If S ={a;,a,...,ax} then the ideal (S)
consists of all elements of the form ra; + na, + - - - + rax,
where r, ..., 1 € R.

An ideal (a) = aR generated by a single element is called
principal. The ring R is called a principal ideal domain
(PID) if every ideal is principal.



Greatest common divisor

Definition. Let R be an integral domain. Given nonzero

elements ai, as,...,ax € R, their greatest common divisor
ged(ag, ap, - .., a) is an element ¢ € R such that

e c is a common divisor of ay, ar,...,ax, i.e., a; = cq; for
some g; € R, 1 </ <k,

e any common divisor of ay, as, ..., ax is a divisor of ¢ as
well.
If ged(ay, a,...,ax) exists then it is unique up to

multiplication by a unit.

Note that an element ¢ € R is a common divisor of the
elements ai, a», ..., a, if and only if all these elements belong
to the principal ideal cR. Another common divisor d is a
divisor of c if and only if cR C dR. Therefore

ged(ag, ap, . . ., ax), if it exists, is a generator of the smallest
principal ideal containing a1, a, . .., ax.



Theorem If R is a principal ideal domain, then
(i) the greatest common divisor gcd(ay, ay, . . ., ak)
exists for any nonzero elements ai, a»,...,ax € R,
(ii) gcd(a1, a2, ..., ak) = nay + nax + - - - + ryax
for some ri,m, ..., € R.

Proof. Consider an ideal | = (ay, ay,...,ax) generated by the
elements ai, ap,...,ax. Since the ring R is a principal ideal
domain, we have | = cR for some ¢ € R. It follows that

c =ged(ay, a,...,ax). Moreover, since ¢ € I, we have
C=nay+ nha+ -+ rnag forsome rn,n,...,n € R.



Relatively prime elements

Definition. Let R be an integral domain. Nonzero elements
a,b € R are called relatively prime (or coprime) if
ged(a, b) = 1.

Theorem Suppose R is a principal ideal domain. If a
nonzero element ¢ € R is divisible by two coprime elements
a and b, then it is divisible by their product ab.

Proof: By assumption, ¢ = aq; and ¢ = bg, for some
g1,9> € R. Since gecd(a,b) =1 and R is a principal ideal
domain, it follows that rna+ rnb =1 for some r,n € R.
Then ¢ = c(na+ nb) = rca+ rncb = rngab+ rngab
= (rng> + rqi1)ab, which implies that c is divisible by ab.

Corollary Suppose R is a principal ideal domain. If a nonzero
element ¢ € R is divisible by pairwise coprime elements
ai, a, ..., ax, then it is divisible by their product a;a,... ax.



Euclidean rings

Let R be an integral domain. A function

E:R\ {0} — Z, is called a Euclidean function

on R if for any x,y € R\ {0} we have x =qy +r
for some q,r € R such that r=0 or E(r)<E(y).

The ring R is called a Euclidean ring (or
Euclidean domain) if it admits a Euclidean
function.

In a Euclidean ring, division with remainder is well
defined.

Theorem Any Euclidean ring is a principal ideal
domain.



Euclidean algorithm

Lemma 1 If b divides a then gcd(a, b) = b.

Lemma 2 Suppose R is a Euclidean ring. If b
does not divide a and r is the remainder of a when
divided by b, then gcd(a, b) = ged(b, r).

Idea of the proof: Since a= bgq+ r for some g € R, the
pairs a, b and b, r have the same common divisors.

Theorem Suppose R is a Euclidean ring. Given
two nonzero elements a, b € R, there is a sequence
r,r,...,rg such that n =a, rn=>b, r;is the
remainder of r;_, when divided by r;_; for 3<i<k,
and ry divides ry_1. Then gcd(a, b) = r.



Example. R =7, a= 1356, b = 744.
gcd(a, b) =7
We obtain

1356 =744 -1 + 612,

744 = 612 -1+ 132,

612 =132 -4 + 84,

132 =84 -1+ 48,

84 =48 -1+ 36,
48 =36-1+ 12,
36 =12 3.

Thus gcd(1356, 744) = 12.



Problem. Find an integer solution of the equation
1356m + 744n = 12.

Let us use calculations done for the Euclidean algorithm
applied to 1356 and 744.

1356 = 744 -1+ 612

—> 612=1-1356—1-744

744 =612 -1+ 132

= 132=744—-612=—1-1356+2-744

612 =132-4 + 84

—> 84 =612—-4-132=5-1356 -9 744

132 =2084-1+48

— 48=132-84=—-6-1356+ 11744

84 =48-1+36
— 36 =284 — 48 = 111356 — 20 - 744
48 =36-1+12

= 12=48 -36 = —-17-1356431-744
Thus m = —17, n = 31 is a solution.



Alternative solution. Consider a matrix (1 0 ‘ 1356),

0 1| 744

x = 1356,
y = T744.

We are going to apply elementary row operations to this
matrix until we get 12 in the rightmost column.

1 01356 1 —1]612 1 —-1]612
01|74 ) 7" \o 1]|744) 7 \-1 2]132
N 5 —9]| 84 . 5 —-9|84 N 11 —20|36
-1 2132 —6 11|48 —6 1148
o 11 —20 |36 N 62 —113| 0
—17 31|12 —17 31|12
Hence the above system is equivalent to
{ 62x — 113y = 0,

which is the augmented matrix of a system {

—17x 4+ 31y = 12.
Thus m = —17, n =31 is a solution to 1356m + 744n = 12.



Problem. Find all common roots of real polynomials
p(X)=X4+2X3—x2—2x+1 and q(X):X4+X3—|—x—1_

Common roots of p and g are exactly roots of their greatest
common divisor ged(p, q). We can find gecd(p, g) using the
Euclidean algorithm.

First we divide p by ¢ x* +2x3 —x2 —2x +1 =
=(x*+x3+x—-1)(1)+ x> — x> —3x+2.

Next we divide g by the remainder r(x) = x> — x* — 3x + 2:
x*+x3+x—1=(x—-x>*—-3x+2)(x+2)+5x>+5x — 5.
Next we divide r; by the remainder ry(x) = 5x% + 5x — b:

X3 —x? —3x+2=(5x%+5x — 5)(ix — 2).

Since r, divides ry, it follows that

ged(p, q) = ged(g, ) = ged(r1, r2) = 1.
The polynomial ry(x) = 5x® +5x — 5 has roots

(-1 —+/5)/2 and (—1++/5)/2.



Chinese Remainder Theorem

Theorem Let n,m > 2 be relatively prime
integers and a, b be any integers. Then the system
x = amod n,
{ X = bmod m
of congruences has a solution. Moreover, this
solution is unique modulo nm.
Proof: Since gcd(n,m) =1, we have sn+ tm =1 for some
integers s,t. Let ¢ = bsn+ atm. Then
¢ =bsn+ a(l —sn) = a+ (b— a)sn = a(mod n),
¢ = b(1l — tm) + atm = b+ (a — b)tm = b(mod m).

Therefore ¢ is a solution. Also, any element of [c],m is a
solution. Conversely, if x is a solution, then n|(x — ¢) and
m|(x — ¢), which implies that nm|(x — ¢), i.e., x € [¢]mm-



x = 3mod 12,

Problem. Solve simultaneous congruences
& X = 2mod 29.

The moduli 12 and 29 are coprime. First we use the
Euclidean algorithm to represent 1 as an integral linear
combination of 12 and 209:

1 012 _ 1 012 _ 5 =212
0 1|29 -2 115 -2 115
_ 5 =212 _ 29 —121|0
—-12 5|1 —12 511)°

Hence (—12)-12+5-29=1. Let x; =5-29 = 145,
xp = (—12) - 12 = —144. Then

x; = 1mod 12, X» = 0mod 12,

x; = 0mod 29. Xo = 1mod 29.

It follows that one solution is x = 3x; + 2x, — 147. The
other solutions form the congruence class of 147 modulo
12.29 = 348.




Chinese Remainder Theorem (generalized)

Theorem Let ny, ny, ..., ne > 2 be pairwise
coprime integers and ai, as, ..., ax be any integers.
Then the system of congruences

X = a; mod nq,

X = ap mod ny,

X = a, mod ng
has a solution which is unique modulo nin, ... n.
Idea of the proof: The theorem is proved by induction on k.

The base case kK =1 s trivial. The induction step uses the
usual Chinese Remainder Theorem.



Problem. Solve simultaneous congruences

x = 1mod 3,

x = 2mod4,

x = 3modb.
First we solve the first two congruences. Let x; =4, x, = —3.
Then x; =1mod3, x; = 0mod4 and x, = 0mod 3,
Xo = 1 mod4. It follows that x; + 2x, = —2 is a solution.
The general solution is x = —2mod 12.

Now it remains to solve the system

x = —2mod 12,
x = 3modb.

We need to represent 1 as an integral linear combination of 12
and 5: 1 =(—2)-12+5-5. Then a particular solution is
x=3-(-2)-124(—2)-5-5= —122. The general solution
is x = —122mod 60, which is the same as x = —2mod 60.



